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Preface 

The aim of this book is to give a self-contained account of the statistical 

basis of epidemiology. The book is intended primarily for students enrolled 

for a masters degree in epidemiology, clinical epidemiology, or biostatistics, 

and should be suitable both as the basis for a taught course and for private 

study. 

Although we anticipate that most readers will have taken a first course 

in statistics, no previous knowledge is assumed, and the mathematical level 

of the book has been chosen to suit readers whose basic training is in biol¬ 

ogy. Some of the material in the book could be omitted at first reading, ei¬ 

ther because it is rather more demanding of mathematical skills or because 

it deals with rather specialized points. We have been careful to gather such 

material either into complete chapters or complete sections and to indicate 

these with a marginal symbol, as here. 
Epidemiologists today have ready access to computer programs of great 

generality, but to use these sensibly and productively it is necessary to 

understand the ideas which lie behind them. The most important of these 

is the idea of a probability model. All statistical analysis of data is based 

on probability models, even though the models may not be explicit. Only 

by fully understanding the model can one fully understand the analysis. 

Models depend on parameters, and values must be chosen for these 

parameters in order to match the model to the data. In showing how this 

is done we have chosen to emphasize the role of likelihood because this offers 

an approach to statistics which is both simple and intuitively satisfying. 

An additional advantage of this approach is that it requires the model and 

its parameters to be made explicit, even in the simplest situations. More 

complex problems can then be tackled by natural extensions of simple 

methods and do not require a whole new way of looking at things. 

Most of the material in this book was developed during successive res¬ 

idential summer courses in epidemiology and statistics, held in Florence 

under the auspices of the European Educational Programme in Epidemiol¬ 

ogy. We are grateful to the International Agency for Cancer Research, the 

Regional Office for Europe of the World Health Organization, the Commis¬ 

sion of the European Communities, and the Tuscany Regional Government, 

for sponsoring the program, and to Walter Davies, Organizing Secretary, 

and Rodolfo Saracci, Course Director, whose respective skills ensured that 

the course took place each year. We also acknowledge with thanks helpful 
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comments on earlier drafts from Damien Jolley, Bendix Carstensen, Dave 
Leon, and Nick Hills. 

Cambridge 

London 

Febuary 1993 

David Clayton 

Michael Hills 

Dedication 

To the students of the Florence course, 1988 - 92, without whose help and 
encouragement this book would never have appeared. 
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Probability models and 
likelihood 

I 
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1 
Probability models 

1.1 Observation, experiments and models 

Science proceeds by endless repetition of a three-stage process, 

1. observation; 

2. building a model to describe (or ‘explain’) the observations; and 

3. using the model to predict future observations. If future observations 

are not in accord with the predictions, the model must be replaced 
or refined. 

In quantitative science, the models used are mathematical models. They 

fall into two main groups, deterministic models and probability (or stochas¬ 

tic) models. It is the latter which are appropriate in epidemiology, but the 

former are more familiar to most scientists and serve to introduce some 

important ideas. 

DETERMINISTIC MODELS 

The most familiar examples of deterministic models are the laws of classical 

physics. We choose as a familiar example Ohm’s law, which applies to the 

relationship between electrical potential (or voltage), V, applied across a 

conductor and the current flowing, I. The law holds that there is a strict 

proportionality between the two — if the potential is doubled then the 

current will double. This relationship is represented graphically in Fig. 1.1. 

Ohm’s law holds for a wide range of conductors, and simply states that 

the line in Fig. 1.1 is straight; it says nothing about the gradient of the 

line. This will differ from one conductor to another and depends on the 

resistance of the conductor. Without knowing the resistance it will not be 

possible to predict the current which will flow in any particular conductor. 

Physicists normally denote the resistance by R and write the relationship 

However, R is a different sort of quantity from V or I. It is a parameter — 

a number which we must fix in order to apply the general law to a specific 

case. Statisticians are careful to differentiate between observable variables 
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I 

Fig. 1.1. A deterministic model: Ohm’s law. 

(such as V and /) and parameters (such as R) and use Greek letters for 

the latter. Thus, if Ohm were a modern statistician he would write his law 
as 

P 

In this form it is now clear that p, the resistance, is a parameter of a simple 

mathematical model which relates current to potential. Alternatively, he 
could write the law as 

I =1V 

where 7 is the conductance (the inverse of the resistance). This is a simple 

example of a process called reparametrization — writing the model differ¬ 
ently so that the parameters take on different meanings. 

STOCHASTIC MODELS 

Unfortunately the phenomena studied by scientists are rarely as predictable 

as is implied by Fig. 1.1. In the presence of measurement errors and un¬ 

controlled variability of experimental conditions it might be that real data 

look more like Fig. 1.2. In these circumstances we would not be in a po¬ 

sition to predict a future observation with certainty, nor would we be able 

to give a definitive estimate of the resistance parameter. It is necessary 

to extend the deterministic model so that we can predict a range of more 

probable future observations, and indicate the uncertainty in the estimate 
of the resistance. 

Problems such as this prompted the mathematician Gauss to develop 

his theory of errors, based on the Gaussian distribution (often also called 

the Normal distribution), which is the most important probability model 

for these problems. A very large part of statistical theory is concerned with 

this model and most elementary statistical texts reflect this. Epidemiology, 
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I 

Fig. 1.2. Experimental/observational errors. 

however, is more concerned with the occurrence (or not) of certain events in 

the natural history of disease. Since these occurrences cannot be described 

purely deterministically, probability models are also necessary here, but 

it is the models of Bernoulli and Poisson which are more relevant. The 

remainder of this chapter discusses a particularly important type of data 

generated by epidemiological studies, and the nature of the models we use 

in its analysis. 

1.2 Binary data 

Many epidemiological studies generate data in which the response mea¬ 

surement for each subject may take one of only two possible values. Such 

a response is called a binary response. Two rather different types of study 

generate such data. 

COHORT STUDIES WITH FIXED FOLLOW-UP TIME 

In a cohort study a group of people are followed through some period of 

time in order to study the occurrence (or not) of a certain event of interest. 

The simplest case is a study of mortality (from any cause). Clearly, there 

are only two possible outcomes for a subject followed, say, for five years — 

death or survival. 
More usually, it is only death from a specified cause or causes which 

is of interest. Although there are now three possible outcomes for any 

subject — death from the cause of interest, death from another cause, or 

survival — such data are usually dealt with as binary data. The response is 

taken as death from cause of interest as against survival, death from other 

causes being treated as premature termination of follow-up. Premature 

termination of follow-up is a common feature of epidemiological and clinical 

follow-up studies and may occur for many reasons. It is called censoring, a 

word which reflects the fact that it is the underlying binary response which 
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we would have liked to observe, were it not'for the removal of the subject 
from observation. 

In incidence studies the event of interest is new occurrence of a spec¬ 

ified disease. Again our interest is in the binary response (whether the 

disease occurred or not) although other events may int^vene to censor our 
observation of it. 

For greater generality, we shall use the word failure as a generic term 

for the event of interest, whether incidence, mortality, or some other (unde¬ 

sirable) outcome. We shall refer to non-failure as survival. In the simplest 

case, we study N subjects, each one being followed for a fixed time in¬ 

terval, such as five years. Over this time we observe D failures, so that 

N — D survive. We shall develop methods for dealing with censoring in 
later chapters. 

CROSS-SECTIONAL PREVALENCE DATA 

Prevalence studies have considerable importance in assessing needs for 

health services, and may also provide indirect evidence for differences in in¬ 

cidence. They have the considerable merit of being relatively cheap to carry 

out since there is no follow-up of the study group over time. Subjects are 

simply categorized as affected or not affected, according to agreed clinical 
criteria, at some fixed point in time. In a simple study, we might observe 

N subjects and classify D of them as affected. An important example is 

serological studies in infectious-disease epidemiology, in which subjects are 

classified as being seropositive or seronegative for a specified infection. 

1.3 The binary probability model 

The obvious analysis of our simple binary data consisting of D failures 

out of N subjects observed is to compute the proportion failing, D/N. 

However, knowing the proportion of a cohort which develops a disease, or 

dies from a given cause, is of little use unless it can be assumed to have a 

wider applicability beyond the cohort. It is in making this passage from 

the particular to the general that statistical models come in. One way 

of looking at the problem is as an attempt to predict the outcome for a 

new subject, similar to the subjects in the cohort, but whose outcome is 

unknown. Since the outcome for this new subject cannot be predicted 

with certainty the prediction must take the form of probabilities attached 

to the two possible outcomes. This is the binary probability model. It 

is the simplest of all probability models and, for the present, we need 

to know nothing of the properties of probability save that probabilities 

are numbers lying in the range 0 to 1, with 0 representing an impossible 

outcome and 1 representing a certain outcome, and that the probability 

of occurrence of either one of two distinct outcomes is the sum of their 

individual probabilities (the additive rule of probability). 
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(Failure) 

(Survival) 

Fig. 1.3. The binary probability model. 

THE RISK PARAMETER 

The binary probability model is illustrated in Figure 1.3. The two outcomes 

are labelled F (failure) and S (survival). The model has one parameter, n, 

the probability of failure. Because the subject must either fail or survive, 

the sum of the probabilities of these two outcomes must be 1, so the proba¬ 

bility of survival is 1—7r. In the context where n represents the probability 

of occurrence of an event in a specified time period, it is usually called the 

risk. 

THE ODDS PARAMETER 

An important alternative way of parametrizing the binary probability model 

is in terms of the odds of failure versus survival. These are 

7T : (1 - 7T), 

which may also be written as 

7T 

1 — 7T 
: 1. 

It is convenient to omit the : 1 in the above expression and to measure the 

odds by the fraction 
7T 

1 — 7T 

This explains why, although the word odds is plural, there is often only 

one number which measures the odds. 

Exercise 1.1. Calculate the odds of F to S when the probability of failure is (a) 

0.75, (b) 0.50, (c) 0.25. 

In general the relationship between a probability 7r and the corresponding 

odds f1 is 
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This can be inverted to give 

ft 1 

7r“ i + o’ 1_7r=iTo' 

Exercise 1.2. Calculate the probability of failure when Or^he odds of F to S is 
(a) 0.3, (b) 3.0. 

RARE EVENTS 

In this book we shall be particularly concerned with rare events, that is, 

events with a small probability, n, of occurrence in the time period of 

interest. In this case (1 — n) is very close to 1 and the odds parameter and 
the risk parameter are nearly equal: 

; ft ~ 7r. 

This approximation is often called the rare disease assumption, but this is 

a misleading term, since even the common cold has a small probability of 
occurrence within, say, a one-week time interval. 

1.4 Parameter estimation 

Without giving a value to the parameter n, this model is of no use for 

prediction. Our next problem is to use our observed data to estimate its 

value. It might seem obvious to the reader that we should estimate n by 

the proportion of failures, D/N. This corresponds to estimating the odds 

parameter ft by D/(N - D), the ratio of failures to survivors. 

It might also seem obvious that we should place more reliance on our 

estimate (and upon any predictions based on it) if N is 1000 than if N is 

10. The formal statistical theory which provides a quantitative justification 
for these intuitions will be discussed in later chapters. 

1.5 Is the model true? 

A model which states that every one of a group of patients has the same 

probability of surviving five years will seem implausible to most clinicians. 

Indeed, the use of such models by statisticians is a major reason why some 

practitioners, brought up to think of each patient as unique, part company 
with the subject! 

The question of whether scientific models are true is not however, a 

sensible one. Instead, we should ask ourselves whether our model is useful 

in describing past observations and predicting future ones. Where there re¬ 

mains a choice of models, we must be guided by the criterion of simplicity. 

In epidemiology probability models are used to describe past observations 

of disease events in study cohorts and to make predictions for future indi¬ 

viduals. If we have no further data which allows us to differentiate subjects 
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in the cohort from one another or from a future individual, we have no op¬ 

tion save to assign the same probability of failure to each subject. Further 

data allows elaboration of the model. For example, if we can identify sub¬ 

jects as exposed or unexposed to some environmental influence, the model 

can be extended to assign different probabilities to exposed and unexposed 

subjects. If additionally we know the level of exposure we can extend the 

model by letting the probability of failure be some increasing function of 
exposure. 

In this book we shall demonstrate the manner in which more compli¬ 

cated models may be developed to deal with more detailed data. The 

binary model has been our starting point since it is the basic building brick 

from which more elaborate models are constructed. 

Solutions to the exercises 

1.1 (a) Odds = 0.75/0.25 = 3. 

(b) Odds = 0.50/0.50 = 1. 

(c) Odds = 0.25/0.75 = 0.3333. 

1.2 (a) Probability = 0.3/1.3 = 0.2308. 

(b) Probability = 3/4 = 0.75. 



Conditional probability models 

In this chapter we introduce the idea of conditional probability, which allows 

us to extend the binary model so that the probability of failure can depend 

on earlier events. The natural way of thinking about conditional proba¬ 

bilities is in terms of a tree diagram. These diagrams are used extensively 
throughout the book. 

2.1 Conditional probability 

Suppose a binary probability model assigns a probability to a subject’s 

death during some future time period. It may be that this prediction would 

be better if we knew the subject’s smoking habits. This would be the case 

if the probability of death for a smoker were 0.015 but only 0.005 for a 

non-smoker. These probabilities are called conditional probabilities; they 
are the probabilities of death conditional on being a smoker and a non- 

smoker respectively. Epidemiology is mainly concerned with conditional 

probability models that relate occurrence of some disease event, which we 

call failure, to events which precede it. These include potential causes, 
which we call exposures. 

When subjects are classified as either exposed (E+) or not exposed 

(E—), the conditional probability model can be represented as a tree with 

6 branches. The first two branches refer to E+ and E-; then there are two 

referring to failure and survival if the subject is exposed, and two referring 

to failure and survival if the subject is not exposed. An example is shown in 

Fig. 2.1. The tips of the tree correspond to the four possible combinations 
of exposure and outcome for any subject. 

The probabilities on the first two branches of the tree refer to the prob¬ 

ability that a subject is exposed and the probability that a subject is not 

exposed. Using the smoking example we have taken these to be 0.4 and 

0.6. The probabilities in the next two pairs of branches are conditional 

probabilities. These are 0.015 (F) and 0.985 (S) if a subject is exposed 

(smokes), and 0.005 (F) and 0.995 (S) if a subject is not exposed (does not 
smoke). 

The probability of any combination of exposure and outcome is ob¬ 

tained by multiplying the probabilities along the branches leading to the 
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Probability 

0.006 

0.003 

Fig. 2.1. A conditional probability tree. 

tip which corresponds to that combination. For example, the probability 
that a subject is exposed and fails is 

0.4 x 0.015 = 0.006, 

and the probability that a subject is not exposed and fails is 

0.6 x 0.005 = 0.003. 

This is called the multiplicative rule. 

Exercise 2.1. Calculate the probabilities for each of the remaining 2 possibilities. 
What is the overall probability of failure regardless of exposure? 

This overall probability is usually called the marginal probability of failure. 

STATISTICAL DEPENDENCE AND INDEPENDENCE 

Fig. 2.1 illustrates a model in which the probability of failure differs accord¬ 

ing to whether an individual was exposed or not. In this case, exposure and 

failure are said to be statistically dependent. If the probability of failure is 

the same, whether or not the subject is exposed, then exposure and failure 

are said to be statistically independent. 
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Probability 

0.006 

0.003 

Fig. 2.2. Predicting exposure from the outcome. 

2.2 Changing the conditioning: Bayes’ rule 

The additive and multiplicative rules are the basic building blocks of prob¬ 

ability models. A simple application of these rules allows us to change the 

direction of prediction so that, for example, a model for the probability of 

failure given exposure can be transformed into a model for the probability 

of exposure given failure. 

We shall demonstrate this by using the tree in Fig. 2.1, where the first 

level of branching refers to exposure and the second to outcome. This is 

turned round in Fig. 2.2, so that the first level of branching now refers 

to outcome and the second to exposure. The probabilities of the different 

combinations of exposure and outcome are the same whichever way the 

tree is written; our problem is to fill in the probabilities on the branches of 

this new tree. 

Working backwards from the tips of the tree, the probability of failure 

regardless of exposure is 0.006 + 0.003 = 0.009. This is the probability 

for the first branch of the tree to F. Since the probability corresponding 

to any tip of the tree is obtained by multiplying the probabilities in the 

branches that lead to the tip, it follows that the probability in the branch 

from F to E+, for example, is 0.006/0.009 = 0.667. This is the conditional 

probability of being exposed given the outcome was failure. This process of 

reversing the order of the conditioning is called Bayes’ rule, after Thomas 

Bayes. 
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Exercise 2.2. Calculate the remaining conditional probabilities. 

The following exercise, inspired by problems in screening, demonstrates 
one of the many uses of Bayes’ rule. 

Exercise 2.3. A screening test has a probability of 0.90 of being positive in true 

cases of a disease (the sensitivity) and a probability of 0.995 of being negative in 

people without the disease (the specificity). The prevalence of the disease is 0.001 

so before carrying out the test, the probability that a person has the disease is 

0.001. 

(a) Draw a probability tree in which the first level of branching refers to having 

the disease or not, and the second level to being positive or negative on the 

screening test. Fill in the probabilities for each of the branches and calculate the 

probabilities for the four possible combinations of disease and test. 

(b) Draw the tree the other way, so that the first level of branching refers to 

being positive or negative on the screening test and the second level to having 

the disease or not. Fill in the probabilities for the branches of this tree. What 

is the probability of a person having the disease given that they have a positive 

test result? (This is called the positive predictive value.) 

2.3 An example from genetics 

Our next exercises illustrate a problem in genetic epidemiology. For a 
specified genetic system (such as the HLA system), each person’s genotype 
consists of two haplotypes,* one inherited from the mother and one from 
the father. If a mother has haplotypes (a,b), then one of these is passed to 
the offspring with probability 0.5. Likewise for a father’s haplotypes, (c,d) 
say. Fig. 2.3 shows the probability tree for the genotype of the offspring. 
The presence of haplotype (a) carries a probability of disease of 0.05 while, 
in its absence, the probability is only 0.01. 

Exercise 2.4. Work out the probabilities for the four tips of the probability 

tree which end in disease (F). Hence work out the probabilities of the four pos¬ 

sible genotypes conditional on the fact that the offspring is affected by disease 

(Fig. 2.4). 

Exercise 2.5. In practice the probabilities of disease conditional upon genotype 

are not known constants but unknown parameters. Repeat the previous exercise 

algebraically, replacing the probabilities 0.01 and 0.05 by 7r and 6n respectively. 

How are the conditional probabilities changed if the subject’s father has genotype 

(c,c)? 

The parameter 9, described in Exercise 2.5, is a risk ratio, 

Risk of disease if haplotype (a) present 

Risk of disease if haplotype (a) absent 

*The word haplotype refers to a group of genetic loci which are closely linked and 

therefore inherited together. 
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From mother From father 

(a,c) 

(a,d) 

(b,c) 

(b,d) 

Offspring 

CK05Disease, F 

S 

Disease, F 

S 

Disease, F 

S 

Disease, F 

S 

Fig. 2.3. Disease conditional upon inheritance. 

? / (a,c) 

(a,d) 

(b,c) 

^ (b,d) 

Fig. 2.4. Inheritance conditional upon disease. 

It measures the strength of statistical dependence (or association) between 

the presence of haplotype (a) and occurrence of disease. The above exercise 

shows that the conditional probability of genotype given the presence of 

disease and parental genotypes depends only on this risk ratio. 



Solutions to the exercises 

2.1 

SOLUTIONS 15 

Pr(E+ and S) = 0.4 x 0.985 = 0.394 

Pr(E— and S) = 0.6 x 0.995 = 0.597 

The overall probability of failure is 0.006 + 0.003 = 0.009. 

2.2 See Fig. 

survival are 

2.5. The conditional probabilities of E+ and E— given 

0.394 

0.991 
0.3976, 

0.597 

0.991 
0.6024. 

2.3 (a) See Fig. 2.6. 

(b) See Fig. 2.7. The probability of disease given a positive test result is 

0.0009 

0.005895 
0.1527. 

Note that this is much lower than 0.90, the sensitivity of the test. The 

remaining conditional probabilities are calculated in a similar manner. 

2.4 The probabilities for each of the four tips are obtained by multiply¬ 

ing along the branches of the tree. The sum of the four probabilities is 

0.0300. The conditional probabilities sum to 1.0. 

Genotype Disease Probability Conditional prob. 

(a,c) F 0.5 x 0.5 x 0.05 = 0.0125 0.0125/0.03 = 0.417 

(a,d) F 0.5 x 0.5 x 0.05 = 0.0125 0.417 

(b,c) F 0.5 x 0.5 x 0.01 = 0.0025 0.0025/0.03 = 0.083 

(b,d) F 0.5 x 0.5 x 0.01 = 0.0025 0.083 

Total 0.0300 1.0 

2.5 Repeating the above calculations algebraically yields: 

Genotype Disease Probability Conditional Prob. 

(a,c) F 0.5 x 0.5 x 0n = 0.25071 0/(20 + 2) 

(a,d) F 0.5 x 0.5 x 6*7r = 0.256*77 0/(20 + 2) 

(b,c) F 0.5 x 0.5 x 7r = 0.257r 1/(20 + 2) 

(b,d) F 0.5 x 0.5 x 7r = 0.257T 1/(20+ 2) 

Total 0.2577(26* + 2) 1.0 
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If the father has genotype (c,c) then he can only pass on (c) and the possible 

genotypes of offspring are (a,c) and (b,c). Prior to observation of disease 

presence, these both have probabilities 0.5. Thus, for a subject known to 

have disease, we have 

Genotype Disease Probability Conditional Prob. 

(a,c) F 0.5 x Otx = 0.507r #/(« + !) 
(b,c) F 0.5 X 7T — 0.57T 1/(0 + 1) 

Total O.5tt(0+ 1) 1.0 

Probability 

0.006 

0.003 

0.394 

0.597 

Fig. 2.5. Probability tree for exposure given outcome. 
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Fig. 2.6. Test results, T, given 

Probability 

0.0009 

0.0001 

0.004995 

0.994005 

disease status, D. 

Probability 

0.0009 

0.004995 

0.0001 

0.994005 

Fig. 2.7. Disease status given test results. 



3 
Likelihood 

The purpose of models is to allow us to use past observations (data) to 

make predictions. In order to do this, however, we need a way of choosing 

a value of the parameter (or parameters) of the model. This process is 

called parameter estimation and this chapter discusses the most important 

general approach to it. In simple statistical analyses, these stages of model 

building and estimation may seem to be absent, the analysis just being 

an intuitively sensible way of summarizing the data. However, the analy¬ 

sis is only scientifically useful if we can generalize the findings, and such 

generalization must imply a model. Although the the formal machinery 

of modelling and estimation may seem heavy handed for simple analyses, 

an understanding of it is essential to the development of methods for more 

difficult problems. 
In modern statistics the concept which is central to the process of pa¬ 

rameter estimation is likelihood. Likelihood is a measure of the support 

provided by a body of data for a particular value of the parameter of a 

probability model. It is calculated by working out how probable our ob¬ 

servations would be if the parameter were to have the assumed value. The 

main idea is simply that parameter values which make the data more prob¬ 

able are better supported than values which make the data less probable. 

In this chapter we develop this idea within the framework of the binary 

model. 

3.1 Likelihood in the binary model 

Fig. 3.1 illustrates the outcomes observed in a small study in which 10 

subjects are followed up for a fixed time period. There are two possible 

outcomes for each subject: failure, such as the development of the disease of 

interest, or survival. We adopt a binary probability model for the outcome 

for each subject in which failure lias probability 7r and survival has proba¬ 

bility 1 — 7r. The complete tree would have many branches but only those 

corresponding to the observed study result is shown in full. To calculate 

the probability of occurrence of this result we simply multiply probabilities 

along the branches of the tree in the usual way: 

7T X 7T X (1 — 7r) X • • • X (1 — 7r) = (7r)4(1 — 7r)6. 
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Subject 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

Fig. 3.1. Study outcomes for 10 subjects. 

This expression can be used to calculate the probability of the observed 

study result for any specified value of tv. For example, when 7r = 0.1 the 

probability is 
(0.1)4 x (0.9)6 = 5.31 x 10~5 

and when tv = 0.5 it is 

(0.5)4 x (0.5)6 = 9.77 x 10“4. 

The results of these calculations show that the probability of the observed 
data is greater for tv = 0.5 than for tv = 0.1. In statistics this is often 
expressed by saying that tv = 0.5 is more likely than n = 0.1, meaning 
that the former value is better supported by the data. In everyday use the 
words probable and likely mean the same thing, but in statistics the word 
likely is used in this more specialized sense. 

Exercise 3.1. Is tv = 0.4 more likely than tv = 0.5? 

The result of the expression 

W(i - *f, 
is a probability, but when we use it to assess the amount of support for 

different values of tv it is called a likelihood. More generally, if we observed 

D failures in N subjects, the likelihood for tv would be 

(tv)d{1-tv)n-d, 

and we shall call this expression the Bernoulli likelihood, after the Swiss 

mathematician. Because there are so many possible outcomes to the study, 
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Fig. 3.2. The likelihood for tt. 

the likelihood (which is the probability of just one of these) is a small 

number. However, it is not the absolute value of the likelihood which should 

concern us, but its relative value for different choices of it. 

Returning to our numerical example, Fig. 3.2 shows how the likelihood 

varies as a function of tt. The value n = 0.4 gives a likelihood of 11.9 x 10~4, 

which is the largest which can be achieved. This value of 7r is called the 

most likely value or, more formally, the maximum likelihood estimate of 7r. 

It coincides with the observed proportion of failures in the study, 4/10. 

3.2 The supported range for tt 

The most likely value for it is 0.4, with likelihood 11.9 x 10~4. The likelihood 

for any other value of 7r will be less than this. How much less is measured 

by the likelihood ratio, which takes the value 1 when 7r = 0.4 and values less 

than 1 for any other values of ir. This provides a more convenient measure 

of the degree of support than the likelihood itself. It can be used to classify 

values of it as either supported or not according to some critical value of 

the likelihood ratio. Values of tt with likelihood ratios above the critical 

value are reported as ‘supported’, and values with likelihood ratios below 

this critical value as ‘not supported’. The supported range for 7r is the set 

of values of tt with likelihood ratios above the critical value. The choice of 
the critical value is a matter of convention. 

For our observation of 4 failures and 6 survivors, the likelihood ratio 

as a function of tt is shown in Figure 3.3. We have used the number 0.258 
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Fig. 3.3. The likelihood ratio for 7r. 

for the critical value of the likelihood ratio and indicated the limits of the 

supported range with the two arrows. The range of supported values for n is 

rather wide in this case: from 0.17 to 0.65.* For any choice of critical value 

the width of the supported range reflects the uncertainty in our knowledge 

about 7r. The main thing which determines this is the quantity of data 

used in calculating the likelihood. For example, if we were to observe 20 

failures in 50 subjects, the most likely value of n would still be 0.4, but the 

supported range would be narrower (see Figure 3.4). 
Although the concept of a supported range based on likelihood ratios 

is intuitively simple, it requires some consensus about the choice of critical 

value. The achievement of this has not proved easy, since many scientists 

lack an intuitive feel for the amount of uncertainty corresponding to a stated 

numerical value for the likelhood ratio. As a result, statistical theorists 

have tried to find ways to to measure the uncertainty about the value 

of a parameter in terms of probability which, it is argued, is more easily 

interpreted. The way of doing this which is most widely accepted in the 

scientific community is by imagining a large number of repetitions of the 

study. This approach is known as the frequentist theory of statistics and 

leads to a confidence interval for 7r rather than a supported range. Another 

approach, often favoured by mathematicians, is based on a probability 

measure for the subjective ‘degree of belief’ that the parameter value lies 

* These values were obtained from the graph, as illustrated. We shall be describing 

more convenient approximate methods for their computation in Chapter 9. 
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Fig. 3.4. The likelihood ratio based on 20 failures in 50 subjects. 

in a stated credible interval. This is the Bayesian theory of statistics. 

Luckily for applied scientists, these philosophical differences can be re¬ 

solved, at least for the analysis of moderately large studies. In this case, 

we will show in Chapter 10 that the supported range based on a likelihood 

ratio criterion of 0.258 coincides approximately with a 90% confidence in¬ 

terval in the frequentist theory of statistics and a 90% credible interval in 

the Bayesian theory. We shall, therefore, set aside these difficulties for the 

present and continue to develop the idea of likelihood, which holds a central 

place in both theories of statistics and from which most of the statistical 

methods of modern epidemiology can be derived. 

3.3 The log likelihood 

The likelihood, when evaluated for a particular value of the parameter, can 

turn out to be a very small number, and it is generally more convenient 

to use the (natural) logarithm of the likelihood in place of the likelihood 

itself, t When combining log likelihoods from independent sets of data the 

separate log likelihoods are added to form the combined likelihood. This is 

because the likelihoods themselves, being the probabilities of independent 

sets of data, are combined by multiplication. The log likelihood for n, in 

t Readers not completely familiar with the logarithmic function, log(a;) and its inverse, 

the exponential function, exp(x), are referred to Appendix A. 
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Fig. 3.5. The log likelihood ratio for n. 

this example, is 
41og(7r) + 61og(l — 7r). 

Exercise 3.2. Calculate the log likelihood when n = 0.5 and when tt = 0.1. 

The log likelihood takes its maximum at the same value of 7r as the likeli¬ 

hood, namely n = 0.4, so its maximum is 

41og(0.4) +61og(0.6) = —6.730. 

To obtain the log likelihood ratio, this maximum must be subtracted from 

the log likelihood. A graph of the log likelihood ratio is shown in Fig. 3.5. 

The supported range for 7r can be found from this graph in the same way 

as from the likelihood ratio graph, by finding those values of 7r for which 

the log likelihood ratio is greater than 

log(0.258) = -1.353. 

I 

Exercise 3.3. Calculate the log likelihood ratios for 7r = 0.1 and 7r = 0.5. Are 

these values of 7r in the supported range? 

In general, the log likelihood for 7r, when D subjects fail and N — D 

survive, is 
D log(7r) + (N - D) log(l - 7r). 
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We shall show in Chapter 9 that this expression takes its maximum value 

when 7T = D/N, the observed proportion of subjects who failed. 

If the binary model is parametrized in terms of the odds parameter, Q, 

by substituting f2/( 1 + fl) for 7r and 1/(1 + Q) for 7r), we obtain the 

log likelihood 

D log(f2) — N log(l + O). 

This takes its maximum value when Q = D/(N — D), the ratio of the 

number or failures to the number of survivors. The maximum value of the 

log likelihood is the same whether the log likelihood is expressed in terms 
of 7r or f2. 

3.4 Censoring in follow-up studies 

In our discussion of follow-up studies of the occurrence of disease events, or 

failures, we have assumed that all subjects are potentially observed for the 

same fixed period. In most practical studies there will be some subjects 
whose follow-up is incomplete. This will occur 

• when they die from other causes before the end of the follow-up in¬ 
terval; 

• when they migrate and are no longer covered by the record system 
which registers failures; 

• when they join the cohort too late to complete the follow-up period. 

In all three cases the observation time for the subject is said to be censored. 

In fact, the first type of loss to follow-up, failure due to a competing cause, 

is rather different from the remaining two, but they are usually grouped 

together and dealt with in the same way. In Chapter 7 we shall discuss 

the justification for this practice. For the moment, we assume it to be 
reasonable. 

Censoring puts our argument in some difficulty. The model allows for 

only two outcomes, failure and survival, while our data contains three, 

failure, survival, and censoring. For the present we shall avoid this difficulty 

with a simple pretence. As an illustration, suppose we have followed 1000 

men for five years, during which 28 suffered myocardial infarction and 972 

did not, but observation of 15 men was censored before completion of five 

years follow-up. If all 15 men were withdrawn from study on the first day of 

the follow up period, the size of the cohort would be 985 rather than 1000. 

Conversely, if they were all withdrawn on the last day, censoring could 

be ignored and the cohort size treated as a full 1000. When censoring is 

evenly spread over the study interval, we would expect an answer which 

lies somewhere in between these two extreme assumptions. This suggests 

treating the effective cohort size as 972.5 — mid-way between 985 and 

1000. This convention is equivalent to the assumption that 7.5 subjects 

are censored on the first day of follow up and 7.5 on the last day. 
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Table 3.1. Genotypes of 7 probands and their parents 

Proband’s 

genotype 
Parents’ genotypes 

Mother Father Number 
(a,c) (a,b) (c,d) 4 
(b,d) (a,b) (c,d) 1 
(a,c) (a,b) (c,c) 2 

With only 15 subjects lost to follow up through censoring, this crude 

strategy for dealing with censoring is quite satisfactory, but if 150 were 

censored it could be seriously misleading. In Chapter 4 we shall see how 

this problem can be dealt with by extending the model. 

3.5 Applications in genetics 

The use of the log likelihood as a measure of support is of considerable 

importance in genetics. However, in that field it is conventional to use 

logarithms to the base 10 rather than natural logarithms. Since the two 

systems of logarithms differ only by a constant multiple (see Appendix A), 

this is only a trivial modification of the idea. 

As an illustration of the use of log likelihood in genetics, we continue 

the example introduced in Exercises 2.4 and 2.5. Table 3.1 shows some 

hypothetical data which might have formed part of that collected in a 

study of an association between disease risk and presence of a certain HLA 

haplotype. If we were to observe a set of families over time, in order 

to relate the genotype to the eventual occurrence or non-occurrence of 

disease, then we could calculate a likelihood based on the probability of 

disease conditional upon genotype. However, such studies are logistically 

very difficult and are rarely done. Instead it is more usual to obtain, usually 

from clinicians, a collection of known cases of disease (probands) and their 

relatives, and to compare the genotypes of probands with the predictions 

from the model. 
As in Exercise 2.5, we shall consider the model in which presence of a 

given haplotype, (a) say, leads to a risk of disease 6 times as high as in its 
absence. Table 3.1 shows data concerning 7 probands and their parents. 
For each of the genetic configurations shown in the table, we derived the 
conditional probability of the genotype of a proband conditional on the 
genotypes of parents in Exercise 2.5 and we showed that these probabilities 

depend only on the risk ratio parameter 9. 

Exercise 3.4. Write down the expression for the log likelihood as a function 

of the unknown risk ratio, 9, associated with presence of haplotype (a). What 

is the log likelihood ratio for the value 0 = 1 (corresponding to there being no 

increase in risk) as compared with 9 = 6.0 (which is the most likely value of 9 in 

this case). Is the value 9 = 1 supported? 
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Solutions to the exercises 

3.1 The probability of the observed data when n = 0.4 is 

0.44 x 0.66 = 1.19 x 10~3. 

which is more than the probability when 7r = 0.5. It follows that 7r = 0.4 

is more likely than 7r = 0.5. 

3.2 The log likelihood when 7t=0.5 is 

4 log(0.5) + 6 log(0.5) = —6.93. 

The log likelihood when 7r = 0.1 is 

41og(0.1)+ 61og(0.9) = -9.84. 

3.3 The maximum log likelihood, occurring at 7r = 0.4, is 

4 log(0.4) + 6 log(0.6) = -6.73 

so that the log likelihood ratio for n = 0.5 is —6.93 — (—6.73) = —0.20. For 

7r = 0.1 it is —9.84 — (—6.73) = —3.11. Thus 0.5 lies within the supported 

range and 0.1 does not. 

3.4 From the solution to Exercise 2.5, the conditional probabilities for 

each of the three genetic configurations are 9/(29 + 2), 1/(29 + 2), and 

9/(9 + 1). Thus, the log likelihood is 

4l0g G/h)+1108 (2972)+ 2108 Otti) ■ 
At 9 = 1.0 this takes the value 

41°S(i) +llog (i) +21ogQ) = -8-318> 

and at 9 — 6.0 (the most likely value) it is 

4iog (A) + liog (A) + 2iog (5) = -6.337. 

The log likelihood ratio for 9 = 1 is the difference between these, —1.981. 

Thus the parameter value 9 = 1 lies outside the limits of support we have 
suggested in this chapter. 



4 
Consecutive follow-up intervals 

In the last chapter we touched on the difficulty of estimating the probability 

of failure during a fixed follow-up period when the observation times for 

some subjects are censored. A second problem with fixed follow-up periods 

is that it may be difficult to compare the results from different studies; a 
five-year probability of failure can only be compared with other five-year 

probabilities of failure, and so on. Finally, by ignoring when the failures 

took place, all information about possible changes in the probability of 

failure during follow-up is lost. 

The way round these difficulties is to break down the total follow-up 

period into a number of shorter consecutive intervals of time. We shall refer 

to these intervals of time as bands. The experience of the cohort during 

each of these bands can then be used to build up the experience over any 

desired period of time. This is known as the life table or actuarial method. 

Instead of a single binary probability model there is now a sequence of 

binary models, one for each band. This sequence can be represented by a 

conditional probability tree. 

4.1 A sequence of binary models 

Consider an example in which a three-year follow-up interval has been 

divided into three one-year bands. The experience of a subject during 

the three years may now be described by a sequence of binary probability 

models, one for each year, as shown by the probability tree in Fig.4.1. The 

four possible outcomes for this subject, corresponding to the tips of the 

tree, are 

1. failure during the first year; 

2. failure during the second year; 

3. failure during the third year; 

4. survival for the full three-year period. 

The parameter of the first binary model in the sequence is 7r , the prob¬ 

ability of failure during the first year; the parameter of the second binary 

model is tt2, the probability of failure during the second year, given the 

subject has not failed before the start of this year, and so on. These are 
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Fig. 4.1. A sequence of binary probability models. 

all conditional probabilities — conditional on not having failed before the 

start of the year in question. The reason the probabilities are written with 

superscripts is that we have adopted the convention that a superscript is 

used to index time, and a subscript is used to index subjects or groups 

of subjects. It is important to distinguish these two situations, and using 
subscripts for both can be confusing.* 

Suppose, for illustration, that the probability of failure is 0.3 in the first 

year; 0.2 in the second year, given the subject survives the first year without 

failure; and 0.1 in the third year, given the subject survives the first two 

years without failure. These illustrative values for the three conditional 

probabilities are shown on the conditional probability tree in Fig.4.2. 

In this tree, the four final outcomes listed above correspond to the 

tips of the tree, and their probabilities can be calculated by multiplying 

conditional probabilities along the branches of the tree in the usual way. 

For example, the probability of the second outcome is made up from the 

probability that the subject survives the first year (0.7), multiplied by the 

probability that the subject fails during the second year (0.2). Using this 

rule, the four possible outcomes for any subject occur with probabilities: 

0.3 

0.7 x 0.2 

0.7 x 0.8 x 0.1 

0.7 x 0.8 x 0.9 

*Note that 7r2 does not refer to tt X 7r. To avoid confusion we shall always use brackets 
when taking powers; for example, the square of n will be written (7r)2. 
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1 2 3 

Fig. 4.2. Illustrative values for the conditional probabilities. 

These probabilities work out to be 0.3, 0.14, 0.056, and 0.504, and these 

add to 1, as they should, since there are no other possible outcomes. The 

probability of failing at some stage is 

0.3 + 0.14 + 0.056 = 0.496. 

More conveniently this probability can be found by subtracting from 1 the 

probability of surviving the three years without failing, giving 

1 - 0.504 = 0.496. 

The probabilities of surviving one, two, and three years without failing 

are called the cumulative survival probabilities for the cohort. They are 

calculated by multiplying the conditional probabilities of surviving each 

year, and in this case are: 

0.7 

0.7 x 0.8 

0.7 x 0.8 x 0.9. 

which work out to be 0.7, 0.56, and 0.504. 

Exercise 4.1. In a three-year follow-up study the conditional probabilities of 

failure during the first, second, and third years are 0.05, 0.09, and 0.12 respec¬ 

tively. Draw a probability tree for the possible outcomes for a new subject, and 

label the branches of the tree with the appropriate conditional probabilities. Cal¬ 

culate the probability of each of the outcomes, and the probabilities of surviving 
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Fig. 4.3. Survival of 100 subjects through three time bands. 

one, two, and three years without failing. Calculate also the probability of failing 

at some time during the three-year follow-up. 

4.2 Estimating the conditional probabilities of failure 

Suppose that 100 subjects join the cohort at the start of the three-year 

interval and that 10 fail during the first year, 15 during the second, and 8 

during the third, leaving 67 who survive until the end of three years (see 

Fig.4.3). Assuming the same conditional probabilities of failure for each 

of the 100 subjects, these data can be used to estimate their most likely 
values. 

Intuitively it seems sensible to use the experience of those subjects 

who are observed in each year to estimate the conditional probability of 

failure during that year. The most likely values of the three conditional 
probabilities would then be 

10 15 8 

100’ 90’ 75’ 

but is this a legitimate thing to do? It corresponds to regarding the three- 

year follow-up study as equivalent to three separate and independent one- 

year follow-up studies in which the subjects come from the survivors of the 

previous year. In fact this is a legitimate thing to do because the likelihood 

for 7T1, 7r2, and n3 is the same whether the data are regarded as coming 

from one three-year study or from three one-year studies. This may be 
shown algebraically as follows. 
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The probabilities of the four possible outcomes in the three-year study 
are 

7T1 

(1 — W1)^2 

(1 — 7T1)(1 —- 7T2)7T3 

(1 — 7T1)(1 — 7T2)(1 — 7T3) 

A subject who fails during the first year therefore contributes 

logCrr1) 

to the log likelihood. A subject who fails during the second year contributes 

log(l -7T1) +log(7T2), 

a subject who fails during the third year contributes 

log(l - 7T1) + l0g(l - 7T2) + log(7T3), 

and a subject who survives all three years contributes 

log( 1 - 7T1) + log(l - 7r2) + log(l - 7T3). 

Multiplying these by the numbers of subjects with each outcome, that is 

10, 15, 8, and 67 respectively, and adding, gives a total log likelihood of 

10 log^1) + 901og(l - 7T1) 

+ 151og(7T2) + 75 log(l - 7T2) 

+81og(7T3) -I- 671og(l - 7T3). 

This is the same as the log likelihood obtained by regarding the data as 
from three separate and independent one-year studies; the first based on 10 
failures and 90 survivors, the second on 15 failures and 75 survivors, and 

the third on 8 failures and 67 survivors. 

Exercise 4.2. If we were to adopt the more restrictive model that 7r1,7t2,7t3 are 

all equal with common value ir, what would be the most likely value of 7T? 

This exercise makes it clear that, in the analysis of such studies, the basic 

atom of data is not the subject, but the observation of one subject through 

one time band. 

4.3 A cohort life table 

In cohorts where subjects are examined at yearly intervals, the data are 

often presented in the form of numbers of failures and censorings occurring 

each year. An example is given in Table 4.1, which refers to survival of a 
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Table 4.1. Survival by stage at diagnosis 

Year 
Stage I Stage II 

N D L N D L 
1 no 5 5 234 24 
2 100 7 7 207 27 11 
3 86 7 7 169 31 9 
4 72 3 8 129 17 7 
5 61 0 7 105 7 13 
6 54 2 10 85 6 6 
7 42 3 6 73 5 6 
8 33 0 5 62 3 10 
9 28 0 4 49 2 13 
10 24 1 8 34 4 6 

group of women with cancer of the cervix diagnosed at either stage I or 

stage II. The women are examined annually, and censoring occurs if they 

cease attending the clinic; N is the number alive and still under observation 

at the start of each time band, D is the number who die during each band, 
and L is the number censored during each band. 

The estimation of survival experience of the stage I women over the first 
three years is shown in Fig.4.4. Of the 110 subjects who started the first 

year, 5 die and 5 are censored. The effective size of the cohort in the first 

year is taken to be 107.5 and the probability of a subject dying during the 

first year, given the subject was alive at the start of the year, is estimated 

to be 5/107.5 = 0.0465. The conditional probability of surviving the year 
is estimated to be 

1 - 0.0465 = 0.9535. 

The calculations of failure and survival probabilities are shown in Fig.4.4. 

The cumulative survival probabilities are found by multiplying the condi¬ 

tional survival probabilities for each year. For example, the cumulative 
probability of surviving 3 years is 

0.9535 x 0.9275 x 0.9152 = 0.8093. 

Exercise 4.3. Using Table 4.1, draw a tree showing the survival experience for 

stage II women over the first four years, and calculate the conditional survival 
probabilities for each of these years. 

A table of cumulative survival probabilities by year is called a life table, 

and a plot of the cumulative survival probabilities against years survived 

is called a survival curve. The survival curves for both stage I and stage II 
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Fig. 4.4. Estimated conditional probabilities for stage 1 women. 

women are shown in Fig.4.5. It is conventional to start survival curves at a 

probability of one for surviving at least zero years. These plots are useful 

for studying whether the probability of failure is changing with follow-up 

time, and for calculating survival probabilities for different periods of time. 

Exercise 4.4. Use Fig.4.5 to read off the five-year survival probabilities in each 

of the two groups. 

4.4 The use of exact times of failure and censoring 

In the calculations described above, the conditional probability of failure 

during each time band has been estimated by assuming, as in Chapter 3, 

that half the losses during the band occurred at the start and half at the 

> end. If the individual times at which failure (or censoring) occur are known 

then it is possible to avoid this assumptions by choosing the bands so short 

that each failure occupies a band by itself. Such a choice of bands is shown 

in Fig.4.6 for the early follow-up experience of 50 subjects. The horizontal 

line represents follow-up time, failures are marked as •, and losses as x. 

The bands are shown by vertical bars. Only the first few events are shown. 
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Fig. 4.5. Survival curves for Stage I and Stage II women. 
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Fig. 4.6. Early follow-up experience of 50 subjects. 

For bands in which there are no failures the estimated survival probability 

is 1. For bands which contain a failure the estimated survival probability 

is 1 — 1/N where N is the number at risk just before the failure. Thus for 

the band which contains the first failure N = 49 and the estimated survival 

probability is 1 — 1/49 = 48/49. The estimate of the cumulative survival 
probability up to the end of this band is 

1 x 1 x ••• x 48/49 = 0.9796. 
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For the band which contains the second failure N = 46, so the estimated 

survival probability for this band is 1 — 1/46 = 45/46. The cumulative prob¬ 

ability of survival up to the end of the fourth band is therefore estimated 
at 

1 x • ■ • x 48/49 x 1 x • • • x 45/46 = 0.9583. 

These calculations continue until there are no more bands which contain 
failures. 

The bands containing each failure can be made so short that they refer 

to the actual time of failure. When this is done the cumulative survival 

probability over time takes the value 1 until the first failure, when it drops 

to 0.9796; then it stays at 0.9796 until the second failure when it drops to 

0.9583, and so on. The plot of cumulative survival probability versus time 

survived takes the stepped shape shown in Fig.4.6, where the steps occur 

at the failure times. 

This method of estimating the cumulative survival probabilities is called 

the Kaplan-Meier method, after the authors of the paper which showed 

that this procedure yields the most likely value of the survival curve. It is 

widely used in clinical follow-up studies for which individual failure times 

are known. If the failure times are measured exactly the failures will all 

occur at separate times, but if they are measured to the nearest month (for 

example) then there may be several failures at the same time. In this case 

the probability of failure is estimated by dividing the number of failures 

at that failure time by the total number of subjects at risk just before the 

failure time. If losses also occur at this time then, by convention, they are 

included in the number at risk. 

4.5 An example of the Kaplan-Meier method 

Table 4.2 shows the time from diagnosis to death from melanoma, or loss to 

follow-up, for 50 subjects. Times are in complete months so that subjects 

dying during the first month are recorded as surviving one month, and 

so on. For two subjects diagnosis took place at death, so the time was 

recorded as zero. 
Note that probabilities of failure are estimated only for times at which 

failures occurred. The first of these is at time zero; the number at risk is 50, 

with 2 failures, so the probability of failure at this time point is 2/50 = 0.04, 

and the survival probability is 1 - 0.04 = 0.96. The next time at which a 

failure occurs is one month; the number at risk is 48, with one failure, so the 

, probability of failure at this time point is 1/48 = 0.0208 and the probability 

of surviving is 1 — 0.0208 = 0.9792. The next time at which a failure occurs 

is at 2 months, when there are two failures. The probability of failure is 

2/47 = 0.0426, and the survival probability is 1 — 0.0426 = 0.9574. At three 

months there is one failure and one loss to follow-up. In fact this loss was 

a death from a cause other than melanoma, but when estimating survival 
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Table 4.2. Cumulative survival probabilities from the Kaplan-Meier 

method. Non-melanoma deaths (*) are counted as losses. 

Month N D L 

Conditional probability 

of death of survival 

Cumulative prob. 

of survival 

0 50 2 0.0400 0.9600 0.9600 
1 48 1 0.0208 0.9792 0.9400 
2 47 2 0.0426 0.9574 0.9000 
3 45 1 1* 0.0222 0.9778 0.8800 
8 43 1 0.0233 0.9767 0.8595 
10 42 1 0.0238 0.9762 0.8391 
12 41 1 1* 0.0244 0.9756 0.8186 
13 39 1 0.0256 0.9744 0.7976 
15 38 1 0.0263 0.9737 0.7766 
18 37 1* 

19 36 1 0.0278 0.9722 0.7551 
21 35 1 
27 34 2 

30 32 2 

33 31 1 1 0.0323 0.9677 0.7307 
34 29 1 0.0345 0.9655 0.7055 
38 28 1 

40 27 1 
41 26 1 0.0385 0.9615 0.6784 
43 25 1 
44 24 1 
46 23 1 
54 22 1 
55 21 1 0.0476 0.9524 0.6461 
56 20 1 0.0500 0.9500 0.6138 
57 19 2 
60 17 1* 

probabilities from melanoma alone it is counted as a loss to follow-up. (We 

return to a fuller discussion of this point in Chapter 7.) The number at 

risk was 45, with one failure, so the probability of failure is 1/45 = 0.022 

and the probability of survival is 1 - 0.022 = 0.9778, and so on. A plot of 

the cumulative survival probability against time is shown in Fig.4.7. 
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Fig. 4.7. Cumulative survival probability by the Kaplan-Meier method. 

Solutions to the exercises 

4.1 See Fig.4.8. The probabilities of failure during the first, second and 

third years are 

0.05 0.95 x 0.09 = 0.0855 0.95 x 0.91 x 0.12 = 0.1037. 

The probability of surviving three years is 

0.95 x 0.91 x 0.88 = 0.7608. 

The survival probabilities for the three years are 

0.95 0.8645 0.7608. 

The probability of failure at some time during the three years is 

0.05 + 0.0855 + 0.1037 = 0.2392 

or 
1 - 0.7608 = 0.2392. 

4.2 The overall log likelihood is 

33 log(7r) + 232 log(l - 7r), 
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which is equivalent to observing 33 failures in 265 subjects. The most likely 
value of 7r is, therefore 33/265 = 0.125. 

4.3 See Fig.4.9. 

4.4 The five year survival probabilities from Fig.4.5 are 0.78 (Stage I) 
and 0.55 (Stage II). 

1 2 3 

Fig. 4.8. Solution to exercise 4.1. 
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Fig. 4.9. Estimated conditional probabilities for stage II women. 



5 
Rates 

~*X 

We have shown how, by splitting the follow-up period into small enough 

bands, the importance of arbitrary assumptions about when the losses oc¬ 

cur can be minimized. We now follow this argument to its logical conclusion 

and divide the' follow-up into infinitely small time bands. 

5.1 The probability rate 

As the bands get shorter, the conditional probability that a subject fails 

during any one band gets smaller. When a band shrinks towards a single 

moment of time, the conditional probability of failure during the band 

shrinks towards zero, but the conditional probability of failure per unit 

time converges to a quantity called the probability rate. This quantity is 

sometimes called the instantaneous probability rate to emphasize the fact 

that it refers to a moment in time. Other names are hazard rate and force 

of mortality. 

The probability rate refers to an individual subject. This is counter¬ 

intuitive to many epidemiologists, who think of a rate as an empirical 

summary of the frequency of failures in a group observed over time. We 

show in the next section that such a summary is, in fact, the most likely 

value of the common probability rate for the subjects in the group. It 

is general practice in epidemiology to refer to both the probability rate 

and its estimated value as the rate, even though this leads to many logical 

absurdities. We have tried to keep as close as possible to this tradition, 

while avoiding the logical contradictions, by referring to the probability 

rate as the rate parameter and its estimated value as the observed rate. 

5.2 Estimating the rate parameter 

Even though the rate parameter refers to a single individual it is not pos¬ 

sible to estimate its value from the experience of that individual. The 

estimate must be based on the experience of a group of subjects assumed 

to have the same rate. Similarly, even though the rate parameter refers to 

a single moment of time, its estimated value is usually based on a period of 

follow-up over which the rate is assumed to be constant. The estimated rate 

for this period then refers to the constant value which the rate parameter 
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Fig. 5.1. The follow-up experience of 7 subjects. 

takes at all time points during the period. 
The rate parameter over a follow-up period is estimated by dividing the 

period into a number of small time bands of equal length and estimating 
the common probability of failure for each of the bands. This is divided 
by the length of a band to get the rate per unit time. The process is 
illustrated using the follow-up experience of 7 subjects shown in Fig. 5.1, 
in which the follow-up experience of the subjects is shown as lines which 
end when follow-up ends. The lines for those subjects who fail end with a •, 
while those whose observation time is censored end with a short bar. The 
follow-up period has been divided into 10 short bands and for the present 
we shall assume that follow-up always stops at the end of a short band. 
From the figure we see that the follow-up of subject 1 stops after 7 bands 
due to censoring. For subject 6 the follow-up stops after 5 bands when the 
subject fails, and so on. 

Exercise 5.1. How many observations of one subject through one time band 

are observed? How many of these ended in failure? 
I 

Assuming that the rate parameter is constant over the follow-up period, the 

conditional probability of failure is the same for all bands and its most likely 

value is 2/36. The most likely value of the corresponding rate parameter is 

2/36 divided by the length of the bands. Suppose for illustration that each 

band has length 0.05 years. The most likely value of the rate parameter is 
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then 

2 

(36 x 0.05) 
= 1.11 per year. 

Note that 36 x 0.05, which equals 1.8 years, is the total observation time 

for the 7 subjects. 

Now suppose that five times as many bands are used, so that each is 

0.01 years in length. The most likely value of the probability of failure for 

these bands is 2/180, but the most likely value of the corresponding rate 

stays the same because there are now 180 bands of length 0.01 years and 

180 x 0.01 is the same as 36 x 0.05, both being equal to the total observation 

time, added over subjects. In general, then, as the bands shrink to zero, 

the most likely value of the rate parameter is 

Total number of failures 

Total observation time 

Note that assumption that events occur at the end of bands is automatically 

true when the bands shrink to zero. This mathematical device of dividing 

the time scale into shorter and shorter bands is used frequently in this 

book, and we have found it useful to introduce the term clicks to describe 
these very short time bands. 

Time can be measured in any convenient units, so that a rate of 1.11 per 

year is the same as a rate of 11.1 per 10 years, and so on. The total observa¬ 

tion time added over subjects is known in epidemiology as the person-time 

of observation and is most commonly expressed as person-years. Because 

of the way they are calculated, estimates of rates are often given the units 
per person-year or per 1000 person-years. 

The use of the general formula for the estimated value of a rate is now 
illustrated using data from a computer simulation of 30 subjects who are 
liable to only one disease (the failure) and the follow-up is indefinitely long, 
so that eventually all subjects develop the disease. The only variable in 
the outcome is how long it takes for the disease to develop, and these times 
are shown in Table 5.1. 

Exercise 5.2. Using the time interval from the start of the study to the moment 

when the last subject develops the disease, find the total observation time for the 

30 subjects and hence estimate the rate for this interval. Give your answer per 
103 person-years as well. 

Exercise 5.3. The previous exercise is rather unrealistic. Real follow-up studies 

are of limited duration and not all of the subjects will fail during the study period. 

Estimate the rate from a study in which the same subjects are observed only for 
the first five years. 
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Table 5.1. Time until the disease develops, for 30 subjects 

Subject Years Subject Years 

1 19.6 16 0.6 
2 10.8 17 2.1 

3 14.1 18 0.8 
4 3.5 19 8.9 

5 4.8 20 11.6 

6 4.6 21 1.3 

7 12.2 22 3.4 

8 14.0 23 15.3 

9 3.8 24 8.5 

10 12.6 25 21.5 

11 12.8 26 8.3 

12 12.1 27 0.4 

13 4.7 28 36.5 

14 3.2 29 1.1 

15 7.3 30 1.5 

5.3 The likelihood for a rate 

The argument of the last section, although leading to the most likely value 

of the rate parameter, does not allow us to explore the support for other 

values. In this section we shall obtain a formula for the likelihood for a 

rate parameter. 
Consider a more general example in which D failures are observed for 

a total of N clicks of time, each of duration h years, where h is very small 

and N is very large. The total observation time in years is Y — Nh. Let 7r 

be the conditional probability of failure during a click. Then the likelihood 

for 7r is 
(7r)D(l-n)N-D. 

Let the corresponding rate parameter be A, where, because h is small, 

A = 7r/h. 

The likelihood for A follows by replacing 7r by Ah, and is 

(\h)D(l- \h)N~D. 

The log likelihood for A is therefore 

D log(A) + D log(/i) + (N - D) log(l - Ah). 
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To see what happens when time is truly continuous, consider the be¬ 

haviour of this expression as the click duration, h, becomes progressively 

shorter. Since the total observation time Y remains unchanged it follows 

that the number of clicks, N, must become progressiyqjy larger. As h be¬ 

comes smaller and N becomes larger, eventually N — D becomes nearly the 

same as TV, and Ah becomes so small that 

log(l — Ah) « —Ah. 

(This property of the logarithmic function is discussed in Appendix A.) 

Making these substitutions, the log likelihood becomes 

D log(A) + D log(h) — NXh. 

The term D log(h) does not depend on A and is irrelevant since it cancels 

out in log likelihood ratios. Omitting this term and noting that Nh is the 

total observation time, Y, we obtain the following simplified expression for 
the log likelihood: 

D log(A) — XY. 

The corresponding likelihood, 

(X)D exp(—AT), 

is called the Poisson likelihood after the French mathematician. As we 

would expect from the previous section it takes its maximum value when 
A = D/Y. 

To illustrate the use of this likelihood, suppose 7 cases are observed and 

the total observation time is 500 person-years. Then the log likelihood for 
A is 

71og(A) - 500A. 

A graph of the log likelihood ratio versus A is shown in Fig. 5.2. The 

maximum value of the log likelihood occurs at 

A = 7/500 = 0.014 per person-year. 

The supported range for A may be found from the graph by reading off the 
values of A at which the log likelihood ratio has reduced to —1.353. In this 
case the graph shows that the supported range for A is from 7.0 x 10~3 to 
24.6 x 10“3 per person-year. 

Exercise 5.4. Calculate the value of the log likelihood at A = 0.01, A = 0.014, 

and A = 0.02. Using the fact that the log likelihood is at its maximum when 

A = 0.014 calculate the log likelihood ratio for A = 0.01 and A = 0.02. 
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Fig. 5.2. Log likelihood ratio for A. 

If we wish to estimate the rate over a restricted period of observation the 

argument requires only trivial modification; only the person-clicks falling in 

the period of interest contribute information so that D and Y refer to the 

number of events and the observation time which occur within the period. 

5.4 Cumulative survival probability in terms of the rate 

Suppose a subject experiences a constant rate A with no possibility of loss 

during the follow-up. The cumulative probability that he or she will survive 

a given period of time, T, may be found from A by dividing the period into 

N clicks, each of length h, so that T = Nh. The conditional probability 

of failure at each click is Ah, so that the probability of surviving N such 

clicks is 

(1 - Ah)N. 

The log of this cumulative survival probability is 

iVlog(l - Ah) 

and since log(l - Xh) may be replaced by -Ah when h is small this becomes 

-A Nh = -XT. 
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The quantity AT is called the cumulative failure rate. With this terminol¬ 

ogy we have the fundamental result that 

log(Cumulative survival probability) = — Cumula,tjve failure rate 

Applying the antilog function, exp(), to both sides of this relationship yields 

the alternative form: 

Cumulative survival probability = exp (—Cumulative failure rate) 

= exp(—AT). 

Exercise 5.5. Using your estimate of the rate for the 30 subjects shown in 

Table 5.1 (Exercise 5.2), calculate the probability of survival for the first 5 years, 

and hence the'5-year risk. Compare this with the proportion of subjects observed 

to fail in this period (see Exercise 5.3). 

An important special case concerns rare events, in which the cumulative 

survival is large and the cumulative risk is small. Since log(l — x) « — x 
when x is small, 

log(Cumulative survival probability) log(l — Cumulative risk) 

—Cumulative risk, 

so the cumulative risk and the cumulative failure rate are approximately 
equal for rare events. 

5.5 Rates that vary with time 

We have assumed that the rate parameter is constant over the follow-up 

period and this may be unrealistic over an extended follow-up. However, 

provided the rate parameter is not changing too quickly, the follow-up pe¬ 

riod can be divided into broad bands during which the rate can be assumed 

to be constant. This implies abrupt changes in the rate parameter from 

one band to the next, but even such a crude model proves useful in practice 
provided the changes are not too large. 

Consider the first band and let D1 be the number of failures Yl the 

total observation time and A1 the rate parameter. The log likelihood for 
A1 is 

T>1log(A1) - A^1 

and similarly for further bands. Thus once failures and total observation 
time have been partitioned between the time bands estimation of band- 
specific rates proceeds as before. 

Exercise 5.6. Fig. 5.3 illustrates observation of three subjects across three time 

bands, showing the observation time (years) for each subject in each band. What 

are the estimated failure rates for each of the bands? 
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Time (years) 

Fig. 5.3. Survival of three subjects across three time bands. 

The relationship between the cumulative survival probability over sev¬ 

eral bands and the band-specific rates is also a simple generalization of our 

earlier result. For a time interval which has been divided into three bands 

of length Tl, T2, and T3, during which the rates are A1, A2, and A3, the 

log survival probabilities for each band are — A1T1, -A2T2, and —A3T3 

respectively. The log of the cumulative survival probability over all three 

bands is therefore the sum of these, namely 

_\1T1 - A2T2 - A3T3 = -(A 1T1 + A2T2 + A3T3). 

The quantity (A1!11 + A2T2 + A3T3) is the cumulative failure rate over the 

whole interval. It follows that the relationship 

log (Cumulative survival probability) = -Cumulative failure rate 

still holds when the rate varies from one band to the next. 
The use of this relationship to calculate survival probabilities will be 

demonstrated using the data for the survival of women diagnosed with 

Stage I cancer of the cervix, shown in Chapter 4. The time bands are 

one year in length and we shall assume that the rate is constant within a 

time band, but can vary between time bands. Since exact times of failure 

and loss are not given we shall assume that, on average, each failure con¬ 

tributes 0.5 years to the observation time in the band in which the failure 

takes place, and similarly for losses. The total observation time during any 

particular year of follow-up is then approximately 



48 RATES 

Y ~ (N-D-L) x 1 + D x0.5 + Lx0.5 

= TV - 0.5D - 0.5L, 

where TV is the number alive at the start of the year, D is the number of 

deaths, and L is the number of losses during the year. For the first band 

TV = 110, L = 5, and D — 5, so the observation time for the first year is 

Yl ~ (110 — 0.5 x 5 — 0.5 x 5) = 105 woman-years 

and the estimated rate is 5/105 = 0.0476. 

For the second band TV = 100, L — 7, and D = 7, so the observation 
time for the second year is 

Y2 ~ (100 — 0.5 x 7 — 0.5 x 7) = 93 woman-years 

and the estimated rate is 7/93 = 0.0753. 

Exercise 5.7. Estimate the failure rate for stage I subjects during the third 
year. 

The estimated cumulative failure rates for each year of the follow-up are 

shown in Table 5.2. The column headed ‘cumulative survival probability’ 
is obtained using the relationship 

Cumulative survival probability = exp (-Cumulative failure rate). 

A life table constructed in this way is sometimes referred to as a modified 
life table. 

Exercise 5.8. Calculate the cumulative rate over the last five years only, and 

hence the probability that a woman survives for ten years given that she has 
survived the first five. 

5.6 Rates varying continuously in time 

The assumption that the rate parameter is constant over broad bands of 

time, but changes abruptly from one band to the next, is widely used, 

but an alternative model, useful when exact times of failure and censoring 

are known, is to allow the rate parameter to vary from click to click. In 

Chapter 4 this kind of model led to the Kaplan-Meier estimate of the 

survival curve; when using rates it leads to the estimate known as the 
Aalen-Nelson estimate. 

Fig. 5.4 shows the data that were used to describe the Kaplan-Meier 

estimate in Chapter 4, but the stepped graph now refers to the cumulative 
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Table 5.2. Modified life table for stage I women 

Year Rate 
Cumulative 

rate 
Cumulative 

survival probability 
1 0.0476 0.0476 0.9535 
2 0.0753 0.1229 0.8844 
3 0.0886 0.2115 0.8094 
4 0.0451 0.2566 0.7737 
5 0.0000 0.2566 0.7737 
6 0.0417 0.2983 0.7421 
7 0.0800 0.3783 0.6850 
8 0.0000 0.3783 0.6850 
9 0.0000 0.3783 0.6850 

10 0.0513 0.4296 0.6508 

Number: 50 49 46 

K| • | 

Time 

Cumulative ■ 
failure 
rate 

0.0- 

Fig. 5.4. Early follow-up of 50 subjects: the Aalen-Nelson estimate. 

failure rate, not the cumulative survival probability. During the first of 

these clicks the estimated rate is 0/(50h). Similarly for all clicks which 

contain no failure the estimated rate is zero, so there is no addition to the 

cumulative rate at any of these points in time. The cumulative rate graph 

therefore remains horizontal during these clicks. For a click which contains 

a failure the rate is 1/(Nh), where N is the number in the study just before 

the click. Because this rate operates for a click of length h, the estimate of 

the cumulative rate increases by 

1 

iVh 

Because the click can be thought of as being instantaneous, the cumulative 
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Fig. 5.5. Cumulative rate using the Aalen-Nelson method. 

rate jumps by this amount at the moment of occurrence of the failure. In 

our example, the first jump is of size 1/49; the cumulative rate stays at 

this value until the click which contains the second failure when it jumps 
by a further 1/46, and so on. 

The cumulative failure rate estimate may also be expressed as a cumu¬ 
lative survival probability, using the now familiar relationship 

Cumulative survival probability = exp(—Cumulative failure rate). 

When this is done, the Aalen-Nelson estimate of the relationship of the 

cumulative survival probability with time looks very similar to the Kaplan- 

Meier estimate. Both have a stepped shape with steps at the times when 

failures occur. For most of the follow-up period, the two estimates are very 
close because of the approximate relationships, 

log(l — l/N) « -1/iV 

exp(-l/A!) m 1 - l/N 

for large N. At the end of the interval N is sometimes small and the two 
estimates may differ somewhat. 

For reasons to be discussed in Chapter 7, it may be best to plot the 

cumulative failure rate and not the survival probability, even though the 

former is a little harder to interpret. One fairly clear message from the 

plot of cumulative failure rate is how the failure rate varies with time. If 



SOLUTIONS 51 

the failure rate is constant then the cumulative rate will rise linearly with 

time; if the rate is increasing the cumulative rate will rise non-linearly, 

showing an increase in gradient with time; if the rate decreases with time 

the cumulative rate will still rise, but now it will show a decrease in gradient 
with time. 

The Aalen-Nelson plot of the cumulative rate for the melanoma data, 
introduced in Chapter 4, is shown in Fig. 5.5. This plot shows that the 
rate is higher during the first 20 months than during the period from 20 to 
60 months. 

Exercise 5.9. Use the plot in Fig. 5.5 to obtain a rough estimate of the rate 

during the first 20 months and during the period from 20 to 60 months 

Solutions to the exercises 

5.1 The total number of subjects observed through one band is 

7 + 2 + 4 + 2 + 6 + 5 + 10 = 36, 

and 2 of these end in failure. 

5.2 The total observation time for the 30 subjects is 140.1 + 121.8 = 

261.9 years. The rate is 30/261.9 = 0.1145 per year, or 114.5 per 103 

person-years. 

5.3 The total observation time is now 

5 + 5 + 5 + 3.5 + 4.8 + 4.6 + 5 + ... + 1.5 = 115.8 years. 

The total number of failures is 14 so the rate is 14/115.8 = 0.1209 per year, 

or 120.9 per 103 person-years. 

5.4 The log likelihood at A = 0.01 is 

71og(0.01) - 500 x 0.01 = -37.236. 

Similarly the log likelihoods at A = 0.014 and A = 0.02 are —36.881 and 

—37.384. The log likelihood ratio at A = 0.01 is 

(-37.236) - (-36.881) = -0.3550. 

Similarly the log likelihood ratio at A = 0.02 is —0.5032. 

5.5 When the rate is 0.1145 per year, the probability of surviving for 5 

years is 
exp(-0.11452 x 5) = 0.0.564 
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so that the mortality risk is 0.436. The proportion of subjects who failed 

in this period was, in fact, 14/30 = 0.467. 

5.6 The estimated failure rates for the three bands* are 1/13, 0/9, and 

1/2 respectively. 

5.7 The approximate person-years observation in year 3 is 

F3 « 86 - 0.5 x 7 — 0.5 x 7 = 79 

and the estimated rate is 7/79 = 0.0886 per year. 

5.8 The cumulative failure rate over the last five years is 0.173 so that 

the probability that a woman survives for 10 years given that she has 

survived the first 5 years is exp(—0.173) = 0.841. 

5.9 The gradient of the first part of the cumulative rate curve, from 0 

to 20 months, is roughly 0.28/20 = 0.014 per month, which is the rate over 

this period (assumed constant). For the second period, from 20 to 60, the 

gradient is roughly (0.48 — 0.28)/(60 — 20) = 0.005 per month, which is the 
rate over the second period (assumed constant). 
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Time 

6.1 When do we start the clock? 

In Chapter 5 we discussed the variation of rates with time. In that dis¬ 

cussion, by assuming that all subjects entered the study at time zero, we 

implicitly interpreted time to mean time since entry into the study. How¬ 

ever, there are many other ways of measuring time and some of these may 

be more relevant. For example, in epidemiology, it is usually important to 

consider the variation of rates with age, for which the origin is the date of 

birth, or with time since first exposure, for which the origin is the date of 

first exposure. Similarly, in clinical follow-up studies, time since diagnosis 

or start of treatment may be an important determinant of the failure rate. 

In different analyses, therefore, it may be relevant to start the clock at 

different points. Some possible choices for this starting point are described 

in Table 6.1. 

6.2 Age-specific rates 

Age is an extremely important variable in epidemiology, because the in¬ 

cidence and mortality rates of most diseases vary with age — often by 

several orders of magnitude. To ignore this variation runs the risk that 

comparisons between groups will be seriously distorted, or confounded, by 

differences in age structure. 
The assumption that rates do not vary with age can be relaxed by 

dividing the age scale into bands and estimating a different age-specific 

rate in each band. If the follow-up period is short, so that the age of a 

Table 6.1. Some time scales 

Starting point Time scale 

Birth Age 

Any fixed date Calendar time 

First exposure Time exposed 

Entry into study Time in study 

Disease onset Time since onset 

Start of treatment Time on treatment 
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Table 6.2. Entry and exit dates for the cohort of four subjects 

Subject Born Entry Exit Age at entry Outcome 

1 1904 1943 1952 39 .Jypst 

2 1924 1948 1955 24 Failure 

3 1914 1945 1961 31 Study ends 

4 1920 1948 1956 28 Unrelated death 

subject does not change appreciably during follow-up, age-specific rates 

can be estimated by classifying subjects into age groups by their age at 

entry. Each subject appears in only one age group and a separate rate is 

estimated for each group. For longer studies it will be necessary to take 

account of changing age during the study, and to treat age properly — as 

a time scale. This scale is then divided into bands and a separate estimate 

of the rate is made within each age band as described in Chapter 5. In 

this latter analysis, a subject can pass through several age bands during 
the course of the study. 

To see how the failures and observation time are divided between age 
bands consider the cohort of four subjects, shown in Table 6.2. Subject 1 
is lost to follow-up in 1952, subject 2 fails in 1955, subject 3 is still under 
observation when the study period ends, and subject 4 dies from an un¬ 
related cause in 1956. The date when a subject joins the cohort is called 
the entry date and the date when observation stops, for whatever reason, 
is called the exit date. The time between the entry and exit dates is the 
observation time for the subject. To simplify the exercises, we give dates 
only as years and will assume that all events take place on the first day of 
the year. In practice, times would be worked out as accurately as the data 
allow. 

Exercise 6.1. What are the observation times for the members of this cohort? 

Figure 6.1 shows the observation of the subjects in calendar time, while 

Figure 6.2 shows it on a scale where time is measured from each subject’s 

date of birth. To estimate a rate for a particular age band the failures are 

allocated to the bands in which they occurred, and the observation time is 

divided according to how long the subjects spend in each of the age bands. 

For example, the age band 30-34, which is from exact age 30 to just less 

than exact age 35, contains one failure and 10 person-years of observation 

time, so the estimated rate is 1/10 per person-year. 

In this example the observation times in the different time bands have 

been obtained from the figure, but in practice the total observation time 

in an age band is obtained by using the dates when the subject changes 

age bands. For example, subject 1 is 39 years old on entry so he starts in 

the age band 35-39. He changes age band in 1944 (when he is 40), and 

again in 1949 (when he is 45), and he leaves the study in 1952 (when he 
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Subject 1 

Subject 2 

Subject 3 

Subject 4 

1940 1960 1950 
_I 
1970 

Fig. 6.1. Follow-up of four subjects by calendar time. 

Subject 1 

Subject 2 

Subject 3 

Subject 4 

20 25 30 35 40 45 50 

Fig. 6.2. Follow-up of four subjects by age. 

emigrates). The observation time he spends in the different age bands is 

shown in Table 6.3. 
As a check, the total observation time for subject 1 is from 1943 to 

1952 which is 9 years, equal to the sum of the separate times spent in the 

different age bands. 

Exercise 6.2. Subject 5 is born in 1931, joins the cohort in 1953, and is lost 

to follow-up in 1957. Divide the observation time for this subject between the 

five-year age bands shown in Figure 6.2. 

Table 6.3. Time in each age band for subject 1 

Age band Date in Date out Time 

35-39 1943 1944 1 

40-44 1944 1949 5 

45-49 1949 1952 3 

\ 
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Table 6.4. Woman-years and reference rates for a breast cancer study 

Age 

Woman- 

years 

E & W rate per 

100 000 woman-years 

40-44 975 113 

45-49 1079 162 
50-54 2161 151 

55-59 2793 183 
60-64 3096 179 

6.3 The expected number of failures 

One reason for subdividing the total follow-up experience of a cohort into 

age bands is to determine whether the observed number of failures is more 

or less than we might have expected. Since mortality and incidence rates 

usually increase quite sharply with age, the distribution of person years 

observation between age bands is an extremely important determinant of 

the number of events we would expect to observe. 

Table 6.4 shows the partition of woman-years between age bands for 

a cohort study of 974 women given a hormone treatment at menopause. 

During the follow-up period, 15 new cases of breast cancer occurred in the 

cohort. We might ask whether this is more or less than we would expect 
from national rates. 

The third column of the table shows the age-specific incidence rates of 

breast cancer for England and Wales at the time the study was carried out. 

If the rates in the study population are the same as in the rest of England 

and Wales, the number of cases we would expect in each age band is simply 

the product of the woman-years observation and the rate. Thus, for the 

40-44 age band, the expected number of cases is 

975 x 
113 

100 000 
1.10. 

Exercise 6.3. Carry out these calculations for the remaining age groups and 

calculate the total expected number of cases of breast cancer. 

This exercise shows that 16.77 cases are expected from national rates using 

the person years in the study. This expected number of cases is quite close 

to the observed 15, so that there is little suggestion that the rates in this 
cohort are unusual. 

The expected number of cases, as calculated above, is not quite the 

same as the expected number in the usual statistical sense. The latter 

cannot depend upon the outcome of the study, but the former does, since 

the total person-time of observation in the study varies according to how 

many subjects fail and when. However, for the rare events studied by 
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epidemiologists, this variation is small enough to be ignored. 

6.4 Lexis diagrams 

More than one time scale can be important in the same study. For example, 

mortality rates from cancer of the cervix depend upon age, as a result of the 

age-dependence of the incidence rate, and upon calendar time as a result 

of changes in treatment, population screening, and so on. The situation 

is further complicated by the strong dependence of the incidence of this 

disease upon sexual behaviour, which varies from one generation to the 

next. 

The way to separate the effects of two time scales on a rate is to di¬ 

vide each scale into bands, usually of equal width, and to make a separate 

estimate of the rate for each pairing of bands. To see how this is done in 

practice it is best to show the subjects relative to the two scales simulta¬ 

neously, in what is called a Lexis diagram. 

The four subjects in Table 6.2 are shown relative to both age and calen¬ 

dar year simultaneously in the Lexis diagram in Figure 6.3. Each rectangu¬ 

lar region in a Lexis diagram corresponds to a combination of two bands, 

one from each scale. To estimate rates for these combinations of bands 

the failures are allocated to the rectangles in which they occur and the 

observation time for each subject is divided between rectangles according 

to how long the subjects spends in each. 
For example, subject 1 joins the cohort in 1943 aged 39. He changes 

age bands one year later in 1944 then 5 years later in 1949. He changes 
calendar periods in 1945 and 1950. Finally, observation stops in 1952. The 
subdivision of the observation time for this subject between different age 
and calendar period combinations is shown in Figure 6.4. Note that the 
times in the different bands add to 9 years, the total observation time for 
this subject. For each combination of age band and calendar period the 
rate is estimated by dividing the number of failures by the person-time of 

observation. 

Exercise 6.4. Trace the progress of subject 1 through the squares in Figure 6.3 

and verify the results given above. Divide the observation time for subject 2 

between combinations of five-year bands of age and calendar time in the same 

way. ' 

The same procedure can be used to separate the effect of age from the 
effect of time since entry, although there may not be enough data for some 
combinations of age and time since entry to estimate a rate. Figure 6.5 
shows the four subjects in the cohort relative to age and time since entry. 
Five-year bands have again been chosen for both scales. 

Exercise 6.5. Divide the observation time for subject 1 between different com¬ 

binations of five-year bands of age and time since entry. 
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Fig. 6.3. Lexis diagram showing age and calendar period. 

Subject 1 
4 .1,2 

Age 35 40 45 50 

Year 
I_ 

1940 1945 
_I_I 
1950 1955 

Fig. 6.4. Follow-up of subject 1 by age and calendar time. 

6.5 Reference rates by calendar period 

Reference rates, used to calculate the expected numbers of failures, usually 

come from national rates tabulated by age, sex, and calendar period. In the 

UK these are calculated using an approximate figure for the person-years. 

For example, the all-cause mortality rate for the age band 50-54 during 

1983 is estimated by D/Y where D is the number of deaths during 1983 

for which the subject’s age at death was in the range 50-54, and Y is the 

person-time lived during 1983 by that part of the population whose ages 

were in the range 50-54 during 1983. Since the exact value of Y is not 
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Age 

0 5 10 15 20 

Follow-up time 

Fig. 6.5. Lexis diagram showing age and time since entry, 

known an approximate value is obtained from 

Y ~ Population aged 50-54 in mid-1983 x 1 year. 

For five-year calendar periods such as 1981-85, 

Y ~ Population aged 50-54 in mid-1983 x 5 years. 

The population in the different age bands for any year is obtained from 
the census; directly for census years and indirectly for inter-census years 
by updating the last census by births, deaths, and migration. 

Exercise 6.6. The total number of deaths from cancer of the lung in the SW 

region of England during the years 1981-88 were males: 14 751, females: 5420. 

The 4984 population of the region is estimated to be males: 2 154 900, females: 

2 306 300. Calculate the mortality rate per 106 person-years for males and females 

separately. 

When follow-up of a cohort takes place over an extended calendar pe¬ 

riod, the national age-specific rates will usually vary over this period, mak¬ 

ing it difficult to choose a single set of age-specific rates to use for compari¬ 

son purposes. The solution is to compute the expected number of events by 

both age and calendar period, using the appropriate national rates for each 

calendar time period. To do this the person-years observation in the co- 
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Table 6.5. Mortality following X-irradiation 

Cause of 

death 

Number of deaths 

Observed, D Expep^ed, E 

Ratio 

DIE 

Cancers: 

Leukaemia 31 6.47 4.79 

Colon 28 17.30 1.62 

Heavily irradiated sites 259 167.50 1.55 

Lightly irradiated sites 79 65.65 1.20 

All neoplasms 397 256.92 1.55 

Other causes 1362 804.68 1.69 

All causes 1759 1061.61 1.66 

hort study must be partitioned by age and calendar period. The expected 

number of failures can then be calculated for each combination of age and 

calendar period, as before, by multiplying the person-years observation by 

the appropriate national rate. Addition over all combinations of age and 

calendar period yields an expected number of cases which takes account of 

variation in national rates with both age and calendar time. 
An example of this kind of calculation appears in Table 6.5, which 

shows some results taken from a study of cancer mortality in a cohort of 
ankylosing spondilitis patients who had been treated with a single course 
of X-irradiation of the spine.* The follow-up of each patient started in 
the year of treatment (1935-1954) and continued until death, migration 
or 1970 (the date when this analysis was carried out). Follow-up was also 
terminated by a second course of treatment because the aim was to study 
the effect of a single course of X-rays and the time before this effect became 
apparent. The study was carried out in Great Britain and Northern Ireland, 
and the expected numbers of deaths calculated using the national rates for 
England and Wales, tabulated by five-year bands for both age and calendar 
time. It can be seen that mortality from all causes was higher in this cohort 
than in the reference population. Although accounting for relatively few 
excess deaths, the ratio of observed to expected deaths was particularly 
high for leukaemia. This ratio is an important index in epidemiology and 
is called the standardized mortality ratio (SMR). We shall discuss it further 
in Chapter 15. 

Exercise 6.7. Table 6.6 subdivides the observed and expected deaths from 

leukaemia according to time since X-ray treatment. How would this table have 

been calculated? 

From Smith, P.G. and Doll, R.(1982) British Medical Journal, 284, 449-460. 
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Table 6.6. Leukaemia deaths by time since treatment 

Time since treatment (years) 
0-2 3-5 6-8 9-11 12-14 15-17 18-20 >20 

Observed 6 10 6 3 1 4 1 0 
Expected 1.00 0.89 0.87 0.90 0.96 0.90 0.55 0.40 

Ratio 6.00 11.24 6.90 3.33 1.04 4.44 1.82 0.00 

Solutions to the exercises 

6.1 The observation times for the four subjects are 9, 7, 16, and 8 years 
respectively. 

6.2 Subject 5 is 22 years of age on joining the cohort and 26 when lost 

to follow-up. She contributes 3 years to the band 20-24, and 1 year to the 

band 25-29. 

6.3 The expected numbers of cases in the five age bands are 1.10, 1.75, 

3.26, 5.11, and 5.54. The sum of these values is 16.76, but working to full 

accuracy we obtain 16.77 for the total expected number of cases. 

6.4 The AgexPeriod bands in which subject 2 was observed are as fol¬ 

lows: 

Age Calendar period Time in band 

20-24 1945-49 1 

25-29 1945-49 1 

25-29 1950-54 4 

30-34 1950-54 1 

6.5 The AgexFollow-up bands in which subject 1 was observed are as 

follows: 

Age Follow-up time Time in band 

35 39 0-4 1 

40-44 0-4 4 

40-44 5-9 1 

45-49 5-9 3 

6.6 The estimated rate for males is 

14 751 

2154900 x 8 
= 856 per 106 person-years 
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and the estimated rate for females is 

5 420 , 
- = 294 per 10° person-years. 
2 306 300 x 8 H F J 

6.7 The follow-up of each subject can be represented by a line on a 

three-dimensional Lexis diagram with axes: age, period, and time since 

treatment. Age and period were divided into five-year bands and time since 

treatment into three-year bands. Observed deaths and person-years can be 

assigned to cells in the resulting three-dimensional table. Multiplication 

of person-years by national rates gives the expected number of deaths for 

each cell. Table 6.6 is formed by adding this table over age and period. 



7 
Competing risks and selection 

7.1 Censoring in follow-up studies 

Up to this point we have lumped all the different reasons for censoring 
together. In this chapter we look at this practice more carefully and make 
a distinction between censoring due to practical difficulties in maintaining 
follow-up (such as migration, refusal to participate further and so on), and 
censoring due to competing causes of failure. 

The first class of events causes removal of a subject from observation, 
but after censoring the subject is still at risk of failure - a subject does 
not cease to run the risk of a myocardial infarction simply because he or 
she has ceased to participate in a follow-up study. Such observations are 
censored in the sense that this later experience is removed from our view. 
The second class of censoring events also causes removal of a subject from 
observation, but this time the subject is no longer at risk from the failure of 
interest . This is obviously true when a subject dies from a competing cause, 
but onset of a non-fatal competing disease can also remove a subject from 
the risk under study. For example, in a study of myocardial infarction in 
previously healthy subjects, a subject who suffers the onset of lung cancer 
would be considered as no longer at risk — although patients with lung 
cancer suffer myocardial infarctions quite frequently, the aetiology is so 
different as to be regarded as a different type of event. 

7.2 Competing causes 

The termination of follow-up by a competing cause is not due to imperfec¬ 
tion of any one study, but is intrinsic to all imaginable studies. The binary 
model which underlies the measurement of disease frequency by rates and 
risks assumes only one type of failure. To allow for more than one type, 
the model must be extended. Fig. 7.1 illustrates a model with two causes 
of failure over a single study period of fixed duration. There are now three 
possible outcomes, labelled FI and F2 for the two types of failure and S 
for survival. The probabilities of FI and F2 are referred to as 7^ and 7t2, 

so the probability of survival is 1 — — 7r2. In incidence studies, 7ri and 
7r2 represent cause-specific failure probabilities or risks. 

It is easy to use likelihood to estimate the parameters 7rx and 7r2. If N 
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FI 

s 

Fig. 7.1. Two causes of failure 

subjects are studied and we observe Dx failures of the first type and D2 

failures of the second type, the likelihood is 

{■nx)Dl (tt2)D2 (1 — 7T1 — 7T2) 
N — D1—D2 

and the log likelihood is 

D1 log(7Ti) + D2 log(7T2) + (N - D1 - D2) log(l - 7T1 - 7T2). 

This takes its maximum value when txx = Dx /N and 7r2 = D2/N so that the 
most likely values correspond with the intuitive measures — the proportions 
of subjects failing due to each cause. 

Exercise 7.1. In a 5-year follow-up study of 1000 subjects, 27 suffered myocar¬ 

dial infarctions during the study period while 8 suffered strokes. (If any subject 

suffered both events, only the first was counted.) Estimate the cause-specific risks 

for these conditions. If myocardial infarctions and strokes are grouped together 

as ‘cardiovascular events’, what is the estimated risk of a cardiovascular event? 

Fig. 7.2 illustrates the extension of this model to describe observation 
of a subject through several consecutive bands. Superscripts denote band 
and subscripts continue to indicate the type of failure. As in the case of a 
single cause, the n parameters are defined as conditional probabilities. For 
example, nf represents the probability of failure FI during the third band, 
conditional upon survival through all preceding bands. The log likelihood 
behaves as if the time bands form separate studies involving different groups 
of subjects, so for each band the cause-specific failure probabilities are 
estimated by the proportion of those subjects at risk during the band, 
failing from the specified cause. 

Exercise 7.2. The conditional probabilities of FI and F2 remain constant at 0.1 

and 0.2 respectively over three bands. List the 7 possible outcomes and calculate 
their probabilities. 
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FI 

F2 

S 

Fig. 7.2. Consecutive time bands 

Table 7.1. Log likelihood contributions for a subject during one click 

Outcome Log likelihood 

FI log Ai + log h 
F2 log A2 + log h 
S —(Ai + A2 )h 

7.3 Cause-specific rates 

The same argument can be extended to rates by dividing the time scale 

into clicks. Fig. 7.1 now represents the possible outcomes for one subject 

during a single click. The conditional failure probabilities are 

7Ti — Ai h, 7T2 — A2 h, 

where h is the duration of a click and Ai and A2 are cause-specific rates — 

conditional probabilities per unit time. Because the probabilities of failure 

are very small, we can make the approximation 
S 

log(l — 7Ti — 7T2) ~ -7Ti - 7T2 = ~(Ai + A2)/l, 

and the contributions to the log likelihood of a single subject during a 

single click are then those shown in Table 7.1. The total log likelihood is 

obtained by summing such terms over subjects and over clicks. There are 

D1 clicks which result in failure of type FI and these contribute a total of 

Di log(Ai) + D1 log(/i) 
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to the log likelihood. Since the second term does not depend upon pa¬ 

rameters it can be ignored. Similarly the D2 failures of type F2 contribute 

D2 log(A2). Because every subject, regardless of eventual outcome, survives 

all the clicks save the last, the sum of all of these log likelihood contribu¬ 

tions over both subjects and clicks is 

—(Ai + A2 )h = — (Ai + A2)y, 

where Y is the total person-time of observation of the cohort. The grand 

total of all these contributions to the log likelihood is 

D\ log(Ai) + D2 log(A2) — (Ai + A2)y. 

A minor rearrangement of this expression leads to 

D\ log(Ai) — AiT + D2 log(A2) —■ A2^ 

so that the log likelihood is the sum of two parts, both Poisson in form, the 

first referring to FI and the second to F2. The fact that the log likelihood 

falls into two distinct parts, one for each cause, justifies the standard prac¬ 

tice of analyzing each cause separately, allowing for competing causes only 

in that they curtail further observation. The argument is easily generalized 

to allow for more than two causes. 

7.4 Interpreting cause-specific rates 

There has been some controversy as to whether the practice of estimating 

cause-specific rates in this way requires us to assume independence of causes 

- an assumption which might often not be justified. In fact, the split of the 

log likelihood into a sum of separate parts, one for each cause-specific rate, 

does not arise as a result of any assumption of independence of causes, 

but out of the way cause-specific rate parameters are defined. The rate 

for cause 1 is defined as the probability per unit time of failure due to 

cause 1, conditional upon the subject having previously survived all causes 

of failure. This quantity is not truly specific to one cause. Influences which 

directly influence one cause can, because of this, have an indirect affect on 

rates for another cause. The term cause-specific is misleading. For exam¬ 

ple, it is likely that myocardial infarction and stroke compete for the same 

high risk subgroup of the population: those with advanced atherosclerosis. 

A preventive measure which reduced the incidence rate of myocardial in¬ 

farction without reducing the prevalence of atherosclerosis would result in 

an increase in the rate of stroke, since more of the atherosclerotic group 

would survive to be at risk from stroke. 

It is a common practice to apply the formula 

log(Cumulative survival probability) = —Cumulative rate. 
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FI 

F2 

S 

Fig. 7.3. Elimination of cause F2 

to the cumulative cause-specific rate to calculate a cause-specific survival 

probability, interpreted as the probability of survival which would be ob¬ 

served if all other causes of failure were eliminated. However, this interpre¬ 

tation does depend on the assumption that the different causes of failure 

are independent. This is illustrated in Fig. 7.3. If the causes are inde¬ 

pendent, subjects who would have failed failed due to F2 have exactly the 

same conditional probabilities of failure due to FI as those who would 

not. Under these circumstances, elimination of cause F2 will have no ef¬ 

fect on the subsequent rate for FI, and the exponential function of minus 

the cumulative cause-specific rate for FI can be interpretated as a survival 

probability when cause F2 is eliminated. More generally we might expect 

elimination of other causes to have an effect on the rate for the remaining 

one and the cumulative cause-specific rate will then have no such inter¬ 

pretation. Since the independence of different causes is usually untestable, 

it is best to avoid such interpretations and to leave estimates of cumu¬ 

lative cause-specific failure rates, calculated by the modified life table or 

Aalen-Nelson method, without converting them to cumulative probabili¬ 

ties of survival. Conversely, if the actuarial life table and Kaplan-Meier 

methods of Chapter 4 are applied to cause-specific failure probabilities, the 

resulting ‘survival probability’ should be transformed to a cumulative rate 

by taking minus its logarithm. 

7.5 Selection bias 

We now turn to the other reasons for censoring in follow-up studies. The 

statistical theory is exactly the same as for competing causes - we simply 

relabel the two causes as failure and loss to follow-up (Fig. 7.4). However, 

the question of dependence between failure and censoring takes on a new 

significance, because censoring arises as a result of the imperfection of 
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real studies, rather than unavoidable biological realities. We would like to 

estimate what would have happened in an ideal study in which no censoring 

occurred, but in order to do this we need to assume that censoring and 

failure are independent. More precisely, this means that that those lost 

to follow-up due to censoring must have the same probabilities of failure 

in later bands as those remaining under observation. If this is the case, 

censoring is said to be non-informative. If not, the study results will be 

subject to selection bias. 

A well known example of selection bias due to censoring arises in clinical 

trials when patients become so ill that their clinicians are unable ethically 

to maintain them on a randomized double blind protocol. The randomiza¬ 

tion code is then broken and the clinician is free to modify the treatment 

as necessary. If observation of such patients is regarded as censored at 

this point, the analysis is seriously biased, because these patients have a 

worse prognosis than those remaining in the trial. It will almost always be 

preferable to continue the follow-up of these patients and to analyze the 

data according to the initial treatment assigned. This is known as analysis 

by intention to treat. 

Similar considerations apply when there is late entry to follow-up stud¬ 

ies. Ideally, subjects should be recruited at the starting point for the failure 

process under study. This is usually the case in clinical epidemiology, where 

patients are recruited into the study at diagnosis, the natural starting point 

for a prognostic study. In many epidemiological studies, however, subjects 

are recruited some time after the natural starting point (see Fig. 7.5) This 

is known as late entry; it can introduce further selection bias if the new sub¬ 

jects have different subsequent probabilities of failure from the survivors 

they join. For example, clinical follow-up studies are frequently carried 

out in cohorts initially recruited from patients under treatment in a group 
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Fig. 7.5. Selection due to loss and late entry 

of participating hospitals when the study starts. These cohorts are then 

extended by addition of new patients as they are diagnosed. When carry¬ 

ing out analyses of survival times from diagnosis, the initial members of 

such a cohort are late entries, because their diagnosis preceded their entry 

into the study. This introduces possibilities for selection bias, because the 

initial cohort could include patients diagnosed elsewhere, but would omit 

patients diagnosed in the participating hospitals and referred elsewhere for 

treatment. 
In epidemiological studies of the causes of disease, late entry is almost 

universal and we must be careful that it does not introduce bias. An ex¬ 

ample of bias arising this way is the healthy worker effect, so called because 

of the widespread empirical finding that occupationally recruited cohorts 

have lower mortality than general population rates would suggest. This 

arises partly because of selective recruitment into occupations but mainly 

because early retirement and job changes in response to ill health act to 

prevent entry of ‘unhealthy’ workers into the cohort. The ideal study would 

recruit subjects on entry to the occupation, but in practice the subjects ac¬ 

tually recruited are those in employment on a particular date. Follow-up 

then starts on that date. Factors such as early retirement, and job changes 

in response to ill health, can operate in the period between joining the 

occupation and recruitment to prevent entry of unhealthy workers into the 

cohort. 
The phenomenon of late entry is closely related to the distinction some¬ 

times drawn between ‘closed’ cohorts (in which only failures and censoring 

can occur) and ‘dynamic’ cohorts, which can be refreshed by new entrants. 

This distinction implies that being closed or dynamic is a property of the 

cohort, but this is incorrect. The occurrence or non-occurrence of late entry 

is not a property of the cohort, but depends on the time scale chosen for 
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analysis. If survival is analyzed by time in study there are no late entries, 

but in an analysis of the same study by age, or by time since entering an 

occupation, there will be late entries. 

Solutions to the exercises 

7.1 The estimated 5-year risk of myocardial infarction is 27/1000 while 

that for stroke is 8/1000. The risk of a cardiovascular event is 35/1000. 

7.2 The outcomes and their probabilities are listed below. 

Outcome Probability 

Band 1 

FI 0.1 

F2 0.2 

Band 2 

FI 0.7 x 0.1 = 0.07 

F2 0.7 x 0.2 = 0.14 

Band 3 

FI 0.7 x 0.7 x 0.1 = 0.049 

F2 0.7 x 0.7 x 0.2 = 0.098 

S 0.7 x 0.7 x 0.7 = 0.343 



8 
The Gaussian probability model 

Until now we have been concerned only with the binary probability model. 

In this model there are two possible outcomes and the total probability of 

1 is shared between them. It is an appropriate model when studying the 

occurrence of events, but not when studying a response for which there are 

many possible outcomes, such as blood pressure. For this the Gaussian or 

normal probability model is most commonly used. 

In the Gaussian model the total probability of 1 is shared between many 

values. This is illustrated in the left panel of Fig. 8.1. When measurements 

are recorded to a fixed number of decimal places, there is a finite number 

of possible outcomes but, in principle, such measurements have infinitely 

many possible outcomes, so the probability attached to any one is effec¬ 

tively zero. For this reason it is the probability density per unit value which 

is specified by the model, not the probability of a given value. This is illus¬ 

trated in the right panel of the figure. If ix is the probability shared between 

values in a very narrow range, width h units, the probability density is -k/H. 

8.1 The standard Gaussian distribution 

The standard Gaussian distribution has probability density centred at 0. 

The probability density at any value z (positive or negative) is given by 

0.3989 exp 

A graph of this probability density for different values of z is shown in 

Fig. 8.2. There is very little probability outside the range ±3. 
Tables of the standard Gaussian distribution are widely available, and 

these readily allow calculation of the probability associated with specified 

ranges of z. For our purposes it is necessary only to record that the proba¬ 

bility corresponding to the range (—1.645,+1.645) is 0.90 and that for the 

range (—1.960,+1.960) is 0.95. 
If the probability model for z is a standard Gaussian distribution then 

the probability model for (z)2 is called the chi-squared distribution on one 
degree of freedom. Tables of chi-squared distributions can be used to find 
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Fig. 8.1. Probability shared between many outcomes. 

z 

Fig. 8.2. The standard Gaussian distribution. 
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the probabilities of exceeding specified values of (z)2 in the same way as 
tables of the standard Gaussian distribution are used to find probabilities 
of exceeding specified values of z. 

Exercise 8.1. Use the tables in Appendix D to find the probability of exceeding 

the value 2.706 in a chi-squared distribution on one degree of freedom. 

Note that, for (z)2 to exceed 2.706, z must lie outside the range ±1.645 of 

the standard normal distribution. 

8.2 The general Gaussian model 

It would be remarkable if the data we are analysing fell into the range 

—3 to ±3, so for modelling the variability of real data, it is necessary to 

generalize the model to incorporate two parameters, one for the central 

value or location, and one for the spread or scale of the distribution. These 

are called the mean parameter and standard deviation parameter and are 

usually denoted by /r and cr respectively. A variable with such a distribution 

is derived by multiplying z by the scale factor and adding the location 

parameter. Thus 

X — H ± <7Z. 

has a distribution of the same general shape as the standard Gaussian 
distribution but centred around /j with most of its probability between 

/j — 3cr and /r ± 3cr. 

Exercise 8.2. If the mean and standard deviation of a general Gaussian distribu¬ 

tion are 100 and 20 respectively, what ranges of values correspond to probabilities 

of 0.90 and 0.95 respectively? 

Similarly, when x has a Gaussian distribution with mean /j, and standard 

deviation a then 

z = 

will have a standard Gaussian distribution. This fact can be used get the 

probability for a range of values of x using tables of z. 
The probability density per unit of x when x has a Gaussian distribution 

with mean /r and standard deviation a is 

HAT 0.3989 

a 
exp 

This expression is obtained by substituting (x f°r z hi the pioba 

bility density of a standard Gaussian distribution to obtain the probability 

density per cr units of x, and then dividing by o to obtain the probability 

density per unit of x. Sometimes the distribution is desciibed in terms of 

the square of cr, which is called the variance. 
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8.3 The Gaussian likelihood 

Suppose a single value of x, say x = 125 is observed. Using the probability 

model that this is an observation from a Gaussian distribution with pa¬ 

rameters p and cr, the log likelihood for p and a is given by the log of the 

corresponding Gaussian probability density: 

l°g(0.3989) - log (cr) - ^ • 

This log likelihood depends on two unknown parameters, but to keep things 

simple we shall assume that one of them, a, is known from past experience 

to have the value 10. Omitting constant terms, the log likelihood for p is 

then 

1 /125 -p\2 

“2 v 10 ; ' 

The most likely value of p is 125 and, since the above expression is zero at 

this point, this expression also gives the log likelihood ratio for p. This is 

plotted in Fig. 8.3; curves with this shape are called quadratic. 

We saw in Chapter 3 that we take the extremes of the supported range 

for a parameter to correspond to the value -1.353 for the log likelihood 

ratio. To find the limits of the supported range for p we must therefore 
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solve the simple equation 

1 /125-/7 

2 V io- 

2 

= -1.353. 

This takes only a few lines: 

/ 125 — yu\2 

V 10 ) 
/125 —/A 

V 10 ) 
A4 

2.706, 

±1.645, 

125 ± 1.645 x 10, 

so that supported values of /x are those between 108.6 and 141.5. In general, 

the log likelihood ratio for /x is 

4(W 
the most likely value of /x is the observation x, and the supported range for 

/i is 
x ± 1.645cr, 

where a is the standard deviation (which we assume to be known). 
We saw in Exercise 8.1 that the probability of exceeding 2.706 in a 

chi-squared distribution is 0.10, and the probability corresponding to the 

range ±1.645 in the standard Gaussian distribution is 0.90. The fact that 

these numbers turn up in the above calculation is no accident and suggests 

that the log likelihood ratio criterion of —1.353 leads to supported ranges 

which have something to do with a probability of 0.90. This is indeed the 

case, but the relationship is not altogether straightforward and we shall 

defer this discussion to Chapter 10. 

8.4 The likelihood with N observations 

When there are N observations 

Xi,X2, ■ • -,xn, 

the log likelihood for /x is obtained by adding the separate log likelihoods 

for each observation giving 

£-K^)2 
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Let M refer to the mean of the observations, 

_ X\ + X2 + • ‘ • + Xjy 
- N ’ 

It can be shown that the log likelihood can be rearranged as 

4(^)2+e-K^)2 
where S = cr/y/N, sometimes called the standard error of the mean. This 

rearrangement involves only elementary algebra and the details are omitted. 

The second part of this new expression for the log likelihood does not 

depend on /r and cancels in the log likelihood ratio for /r which is 

1 / M ~ h \ 2 

2 \ S ) ' 

The most likely value of n is M, and setting the log likelihood ratio equal 

to —1.353 to obtain a supported range for [i gives 

li = M± 1.6455. 

As we would expect, with larger jV, the value of S becomes smaller and 
the supported range narrower. 

Exercise 8.3. The following measurements of systolic blood pressure were ob¬ 

tained from a sample of 20 men. 

98 160 136 128 130 114 123 134 128 107 

123 125 129 132 154 115 126 132 136 130 

What is the most likely value for p? Assuming that a = 14, calculate the range 

of supported values for fi. 

This exercise continues to make the unrealistic assumption, made through¬ 

out this chapter, that a is known. In practice it must almost invariably be 

estimated from the data. We shall defer discussion of this until Chapter 34. 

Solutions to the exercises 

8.1 The probability of exceeding 2.706 in the chi-squared distribution 
with one degree of freedom is 0.10. 

8.2 The range corresponding to a probability of 0.9 is 

100 ± 1.645 x 20 = (67.1,132.9) 
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and, for a probability of 0.95, 

100 ± 1.96 x 20 = (60.8,139.2). 

8.3 The mean of the 20 measurements is 128.00 and this is the most 

likely value of /i. To calculate the supported range for /r, we first calculate 

S = 
a 

Vn 
14 

V20 
3.13 

so that the range lies between 

\x = 128.00 ± 1.645 x 3.13 

that is from 122.9 to 133.1 . 



Approximate likelihoods 

Because the Gaussian log likelihood for the mean parameter, pt,, takes the 

simple form 

the supported range for n also takes a simple form, namely 

M ± 1.6455. 

For log likelihoods such as the Bernouilli and Poisson there is no simple 

algebraic expression for the supported range, and the values of the pa¬ 

rameters at which the log likelihood is exactly —1.353 must be found by 

systematic trial and error. However, the shapes of these log likelihoods 

are approximately quadratic, and this fact can be used to derive simple 

formulae for approximate supported ranges. Methods based on quadratic 

approximation of the log likelihood are particularly important because the 

quadratic approximation becomes closer to the true log likelihood as the 
amount of data increases. 

9.1 Approximating the log likelihood 

Consider a general likelihood for the parameter, 9, of a probability model 

and let M be the most likely value of 9. Since the quadratic expression 

1 /M-9\2 

"2 V~S~) 

has a maximum value of zero when 9 = M it can be used to to approximate 

the true log likelihood ratio, after an appropriate value of S has been 

chosen. Small values of S give quadratic curves with sharp peaks and 

large values of S give quadratic curves with broad peaks. We shall refer 

to S as the standard deviation of the estimate of 9. Alternatively, it is 

sometimes called the standard error of the estimate. 
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Once M has been found and S chosen, an approximate supported range 

for 9 is found by solving the equation 

to give 
0 = M ± 1.6455. 

Full details of how S is chosen are given later in the chapter, but for the 

moment we shall give formulae for S, without justification, and concentrate 

on how to use these in practice. 

THE RISK PARAMETER 

The log likelihood for it, the probability of failure, based on D failures and 

N — D survivors is 

D log(7r) + (N - D) log(l - 7r). 

The most likely value of it is D/N. To link with tradition we shall also 

refer to the most likely value of n as P (for proportion). The value of S 

which gives the best approximation to the log likelihood ratio is 

For the example we worked through in Chapter 3, D = 4 and N = 10 so 

that the value of P is 0.4 and 

An approximate supported range for tt is given by 

0.4 ± 1.645 x 0.1549 

which is from 0.15 to 0.65, while the supported range obtained from the 

true curve lies from 0.17 to 0.65. The true and approximate log likelihood 

curves are shown in Fig. 9.1. The curve shown as a solid line is the true 

log likelihood ratio curve, while the broken line indicates the Gaussian 

approximation. 

THE RATE PARAMETER 

The log likelihood for a rate A based on D cases and Y person years is 

D log(A) - AT. 
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The most likely value of A is D/Y and the value of S which gives the best 

approximation to the log likelihood ratio is 

For the example in Chapter 5, D = 7 and Y = 500. The most likely value 
of A is 0.014 and 

S = /500 = 0.00529. 

An approximate supported range for A is therefore 

0.014 ± 1.645 x 0.00529 

which is from 5.3/1000 to 22.7/1000. The true (solid line) and approximate 
(broken line) log likelihood ratio curves are shown in Fig. 9.2. The range 
of support obtained from the true curve spans from 7.0 to 24.6 per 1000. 

Exercise 9.1. Find the approximate supported range for 7r, the probability of 

failure, based 7 failures and 93 survivors. Find also the approximate supported 

range for A, the rate of failure, based on 30 failures over 1018 person-years. 

9.2 Transforming the parameter 

The Gaussian log likelihood curve for /1 is symmetric about M and extends 

indefinitely to either side. However, the parameters of some probability 
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Fig. 9.2. True and approximate Poisson log likelihoods. 

models are not free to vary in this manner. For example, the rate parameter 

A can take only positive values, and the risk parameter must he between 0 

and 1. Approximate supported ranges for such parameters calculated from 

the Gaussian approximation can, therefore, include impossible values. 

The solution to this problem is to find some function (or transformation) 

of the parameter which is unrestricted and to first find an approximate 

supported range for the transformed parameter. 

THE LOG RATE PARAMETER 

The rate parameter A can take only positive values, but its logarithm is 

unrestricted. To calculate an approximate supported range for A it is bet¬ 

ter, therefore, to first calculate a range for log(A), and then to convert this 

back to a range for A. Note that the range for log(A) will always convert 

back to positive values for A. To find the approximate range for log(A) we 

need a new value of 5 — that which gives the best Gaussian approximation 

to the log likelihood ratio curve when plotted against log(A). When a rate 

A is estimated from D failures over Y person-years, this value of S is given 

by r-— 
S=y/ljD. 

Fig. 9.3 illustrates this new approximation for our example in which D = 7 

and Y = 500 person-years. Here, 

S = y/l/7 = 0.3780, 
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and an approximate supported range for log (A) is 

log(7/500) ± 1.645 x y/\jl, 

which is from —4.890 to —3.647. The range for A is therefore from exp(—4.890) 

to exp(—3.647) which spans from 7.5/1000 to 26.1/1000. 

A more convenient way of carrying out this calculation is suggested by 

noting that the limits of the range for A are given by 

E) J exp (/.645 Jfj. 

The range is then from 0.014/1.862 = 7.5/1000 to 0.014x1.862 = 26.1/1000, 

as before. We shall refer to the quantity 

exp (1.6455) 

as an error factor. 

THE LOG ODDS PARAMETER 

The same thing can be done when calculating a supported range for the risk 

parameter n based on D failures in N subjects. The value of tt is restricted 

on both sides, by 0 on the left and by 1 on the right. The value of log(7r) is 
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still restricted on the right by zero because log(l) = 0, but log(fi), where 

Q is the odds corresponding to 7r, is not restricted at all. Hence we first 

find a range for log(fi) and then convert this back to a range for n. The 

most likely value of log(Q) is 

M = log 
D 

N - D 

and the value of S for approximating the log likelihood for log(fi) is 

S = 
1 

N-D' 

For the example where D = 4 and N — D = 6, 

S = 0.6455 1 

and an approximate supported range for log(Q) is given by 

log ^ ± 1.645 x 0.6455, 

that is, from -1.4673 to 0.6564. This is a range for log(fi) and it is equiv¬ 

alent to a range for H from exp(—1.4673) = 0.231 to exp(0.6564) = 1.928. 

This can be calculated more easily by first calculating the error factor 

exp (1.645 x 0.6455) = 2.892. 

The most likely value of Q is 4/6 = 0.667, so that the supported range for 

S2 is 

0.667 -P 2.892 

that is, from 0.231 to 1.928 as before. Finally, remembering that 7r = 

Q/(l + Q), the range for 7r is given by 

0.231 1.928 

1.231 t0 2.928 

which is from 0.19 to 0.66. 
Some of the more commonly used values of S obtained by approximating 

the log likelihood are gathered together in Table 9.1. 

Exercise 9.2. Repeat Exercise 9.1 by first finding 90% intervals for log(H) and 

log (A) respectively, and then converting these to intervals for 7r and A. 

Exercise 9.3. Repeat the above exercise using error factors. 
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Table 9.1. Some important Gaussian approximations 

Parameter M S 

7T D/N = P y/P( 1 ^)/N 
A D/Y Vd/y 

log(ft) log[D/(N - D)} y/l/D + l/(N-D) 

log(A) log (D/Y) VUd 

9.3 Finding the best quadratic approximation 

We now return to the problem of how to determine the values for M and 

S. To do this we need some elementary ideas of calculus summarized 

in Appendix'B. In particular, we need to be able to find the gradient 

(or slope) of the log-likelihood curve together with its curvature, which is 

defined as the rate of change of the gradient. The mathematical terms for 

these quantities are the first and second derivatives of the log likelihood 

function. 

The value of M can be found by a direct search for that value of of 6 

which maximizes the log likelihood, but it is often easier to find the value 

of 6 for which the gradient of the log likelihood is zero; this occurs when 

9 — M. 

The value of S is chosen to make the curvature of the quadratic approx¬ 

imation equal to that of the true log likelihood curve at M, thus ensuring 

that the true and approximate log likelihoods are very close to each other 

near 0 = M. The quadratic approximation to the log likelihood ratio is 

1 (M-Q\2 

_2 \ S ) ’ 

and the rules summarized in Appendix B show that the curvature of this 

is constant and takes the value 

1 

~W 

We therefore choose the value of S to make — 1/(S')2 equal to the curvature 

of the true log likelihood curve at its peak. 

THE RATE PARAMETER 

The log likelihood for a rate A is 

Dlog(A) - XY. 
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Using the rules of calculus given in Appendix B the gradient of log(A) is 

1/A and the gradient of A is 1. Hence the gradient of the log likelihood is 

D 

T -Y. 

The maximum value of the log likelihood occurs when the gradient is zero, 

that is, when A = D/Y, so the most likely value of A is D/Y. The curvature 

of a graph at a point is defined as the rate of change of the gradient of the 

curve at that point. The rules of calculus show this to be 

D 

~w 

The peak of the log likelihood occurs at A = D/Y so the curvature at the 

peak is found by replacing A by D/Y in this expression to obtain 

JXf 
D 

Setting this equal to — 1/(S')2 gives 

5 = y/D/Y, 

which is the formula quoted earlier. 

THE RISK PARAMETER 

The log likelihood for the probability 7r based on D positive subjects out 

of a total of N is 

D log(7r) + (N - D) log(l - 7r). 

The gradient of the log likelihood is 

D N-D 

7r 1 — 7T 

which is zero at n = D/N, also referred to as P. 

gradient is 
D N-D 

(7r)2 (1 7r)2 

The gradient of the 

so the curvature at 7r = P is 

D N-D 

(P)2 (1-P)2- 
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Replacing D by NP and N - D by N{1 - P), this reduces to 

N 

~ P{ 1 - P) '*>■ 

so 

9.4 Approximate likelihoods for transformed parameters 

When the log likelihood for a parameter is plotted against the log of the 

parameter rather than the parameter itself, the curvature at the peak will 

be different. For example, the log likelihood for a rate parameter A is 

Dlog(A)-AY. 

Plotting this against log(A) is the same as expressing the log likelihood as 

a function of log(A). To do this we introduce a new symbol (3 to stand for 

l°g(A), so 

P = log(A), A = exp(P). 

In terms of (3 the log likelihood is 

D(3 — Y exp(/3). 

The gradient of this with respect to (3 is 

D — Y exp((3) 

and the curvature is 

-Y exp {(3). 

The most likely value of exp(/3) (which equals A) is D/Y, so the curvature 

at the peak is 

-Y x {D/Y) = -D. 

It follows that 

S=^/l/D. 

In general, derivations such as that above can be simplified considerably 

by using some further elementary calculus which provides a general rule for 

the relationship between the values of S on the two scales. In the case of 

the log transformation, this rule states that multiplying the value of S on 

the scale of A by the gradient of log(A) at A = M gives the value of S on the 

scale of log(A). The rules of calculus tell us that, at A = M, the gradient 
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of the graph of log(A) against A is 1/M. Since, on the A scale, M = D/Y 

and 5 = VD/Y, the rule tells us that the value of 5 for log(A) is 

Vd y AT 
~Y~ X D ~ V D' 

This agrees with the expression obtained by the longer method. 

A similar calculation shows that the curvature of the Bernouilli log 

likelihood, when plotted against log(fl), the log odds, is given by 

S = 
1 

N-D‘ 

Solutions to the exercises 

9.1 An approximate supported range for 7r is given by 

0.07 ± 1.6455 c - u 23 

where 5 — y/0.07 x 0.93/100. This gives a range from 0.028 to 0.112. 

An approximate supported range for A is given by 

30/1018 ± 1.6455 

where 5 = \/30/1018. This gives a range from 21/1000 to 38/1000. 

9.2 The approximate supported range for log(fl) is given by 

log(7/93) ± 1.6455 

where 

This gives a range from —3.231 to —1.942. The range for 12 is from 0.040 

to 0.143, and the range for n is from 0.038 to 0.125. 

The approximate supported range for log(A) is given by 

log(30/1018) ± 1.6455 

where 
5= y/lj30 = 0.1826. 

This gives a range from -3.825 to -3.224. The range for A is from 22/1000 

to 40/1000. 
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9.3 The error factor for ft is 

exp( 1.645 x 0.3919) = 1.905. 

Wv 
The most likely value for fl is 7/93 = 0.075 and the range for is from 

0.075/1.905 = 0.040 to 0.075 x 1.905 = 0.143. The range for tt is from 

0.038 to 0.125. 

The error factor for the rate is 

exp(1.645 x 0.1826) = 1.350. 

The most likely value of the rate is 29/1000 with range from 29/1.350 = 22 

per 1000 to 29 x 1.350 = 40 per 1000. 



10 
Likelihood, probability, and 
confidence 

The supported range for a parameter has so far been defined in terms of 

the cut-point —1.353 for the log likelihood ratio. Some have argued that 

the scientific community should accept the use of the log likelihood ratio 

to measure support as axiomatic, and that supported ranges should be re¬ 

ported as 1.353 unit supported ranges, or 2 unit supported ranges, with the 

choice of how many units of support left to the investigator. This notion 

has not met with widespread acceptance because of the lack of any intu¬ 

itive feeling for the log likelihood ratio scale — it seems hard to justify the 

suggestion that a log likelihood ratio of —1 indicates that a value is sup¬ 

ported while a log likelihood ratio of —2 indicates lack of support. Instead 

it is more generally felt that the reported plausible range of parameter val¬ 

ues should be associated in some way with a probability. In this chapter 

we shall attempt to do this, and in the process we shall finally show why 

-1.353 was chosen as the cut-point in terms of the log likelihood ratio. 

There are two radically different approaches to associating a probability 

with a range of parameter values, reflecting a deep philosophical division 

amongst mathematicians and scientists about the nature of probability. We 

shall start with the more orthodox view within biomedical science. 

10.1 Coverage probability and confidence intervals 

Our first argument is based on the frequentist interpretation of probability 

in terms of relative frequency of different outcomes in a very large number 

of repeated “experiments”. With this viewpoint the statement that there 

is a probability of 0.9 that the parameter lies in a stated range does not 

make sense; there can only be one correct value of the parameter and 

it will either lie within the stated range or not, as the case my be. To 

associate a probability with the supported range we must imagine a very 

large number of repetitions of the study, and assume that the scientist 

would calculate the supported range in exactly the same way each time. 

Some of these ranges will include the true parameter value and some will 

not. The relative frequency with which the ranges include the true value 

is called the coverage probability for the range, although strictly speaking 
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it is the coverage probability for the method of choosing the range. 

We shall start with Gaussian probability model and consider the es¬ 

timation of the mean /q from a single observation x, when the standard 

deviation, a, is known. The log likelihood ratio for /i*fe 

-l (W 
We saw in Chapter 8 that the range of values for /x with log likelihood 

ratios above the cut-point of —1.353 is 

x ± 1.645a. 

We shall now show that the coverage probability of this range is 0.90 by 

imagining an endless series of repetitions of the study with the value of p 

remaining unchanged at the true value. Each study will yield a different 

observation, X, and hence a different range (see Fig. 10.1). The range for 

any particular repetition will contain the true value of /i provided the true 

value is judged to be supported by the data X — in other words, provided 

that 
1 

2 

X 
> -1.353, 

where fi now refers to the true value. Writing 

A") 
this condition is equivalent to (z)2 being less than 2.706, and since (z)2 

has a chi-squared distribution this occurs with probability 0.90. Hence the 

coverage probability is 0.90. 

Exercise 10.1. In a computer simulation of repetitions of a study in which 

a single observation is made from a Gaussian distribution with fi = 100 and 

a = 10, the first four repetitions produced the observations 104, 115, 82, and 92. 

Calculate the log likelihood ratio for p. = 100 for each of these four observations. 

In which repetitions would the true value of fi have been supported? 

The idea of coverage probability has allowed us to attach a frequentist 

probability, such as 0.90, to a range of parameter values, but we cannot 

say that the probability of the true value lying within the stated range 

is 0.90, because the stated range either does or does not include the true 

value. To avoid having to say precisely what is meant every time the 

probability for a range is reported, statisticians took refuge in an alternative 

word and professed themselves 90% confident that the true value lies in the 

reported interval. Not surprisingly the distinction between probability and 

confidence is rarely appreciated by scientists. 
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-•- 

Fig. 10.1. Repeated studies and their supported ranges. 

Exercise 10.2. Use tables of the chi-squared distribution to work out the cut- 

point for the log likelihood ratio which leads to a 95% coverage probability for 

the corresponding supported range, and give the formula for this range. 

We have demonstrated the correspondence between the -1.353 cut- 

point for the log likelihood ratio and 90% coverage, but only for the case 

of the Gaussian log likelihood where the standard deviation is known. For¬ 

tunately the relationship also holds approximately for other log likelihoods 

such as the Bernoulli and Poisson. With increasing amounts of data these 

log likelihoods approach the quadratic shape of the Gaussian log likeli¬ 

hood and the coverage probability for the supported range based on the 

-1.353 cut-point is approximately 90%. In other words, if M is the most 

likely value of a parameter and S is the standard deviation of the Gaussian 

approximation to the likelihood, then the supported range 

M± 1.6455 

is also, at least approximately, a 90% confidence interval. 
This raises the question of how much data is needed to use this approx¬ 

imate theory. For the Bernoulli likelihood, a reasonable guide is that the 

approximations are good if both D and N — D are larger than 10, but can 

be misleading if either count is less than 5. In the Poisson case the observed 

number of events, D, should be larger than 10; there is no restriction on 

the number of person-years since this is irrelevant to the shape of the log 
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likelihood curve. In Chapter 12 we discuss what to do when there are too 

few data to use the approximate theory. 

The only likelihood for which the relationship between the supported 

range and the 90% confidence interval holds exactly is. Gaussian likelihood, 

and even here we have made the assumption that the parameter a is known. 

In the early years of this century it was shown that the practice of estimat¬ 

ing the standard deviation using the data and thereafter pretending that 

this estimate is the true value, leads to intervals with approximately the 

correct coverage probability, providing N is large enough (more than 15). 

The intervals we have chosen to present correspond to 90% confidence 

intervals but 95% intervals are more usually reported in the scientific litera¬ 

ture. The routine use of 90% intervals in the epidemiological literature has 

recently been proposed on the grounds that they give a better impression 

of the range of plausible values. If you prefer 95% intervals these can be 

obtained by replacing 1.645 by 1.960 in the calculations. 

10.2 Subjective probability 

The second approach to the problem of assigning a probability to a range of 

values for a parameter is based on the philosophical position that probabil¬ 

ity is a subjective measure of ignorance. The investigator uses probability 

as a measure of subjective degree of belief in the different values which the 

parameter might take. With this view it is perfectly logical to say that 

there is a probability of 0.9 that the parameter lies within a stated range. 

Before observing the data, the investigator will have certain beliefs 

about the parameter value and these can be measured by a priori prob¬ 

abilities. Because they are subjective every scientist would be permitted 

to give different probabilities to different parameter values. However, the 

idea of scientific objectivity is not completely rejected. In this approach 

objectivity lies in the rule used to modify the a priori probabilities in the 

light of the data from the study. This is Bayes’ rule and statisticians who 

take this philosophical position call themselves Bayesians. 

Bayes’ rule was described in Chapter 2, where it was used to calcu¬ 

late the probabilities of exposure given outcome from the probabilities of 

outcome given exposure. Once we are prepared to assign probabilities to 

parameter values, Bayes’ rule can be used to calculate the probability of 

each value of a parameter (9) given the data, from the probability of the 

data given the value of the parameter. 

The argument is illustrated by two tree diagrams. Fig. 10.2 illustrates 

the direction in which probabilities are specified in the statistical model 

— given the choice of the value of the parameter, 6, the model tells us 

the probability of the data. The probability of any particular combination 

of data and parameter value is then the product of the probability of the 

parameter value and the probability of data given the parameter value. In 
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Data 

Fig. 10.2. From parameter value to data. 

Fig. 10.3. From data to parameter value. 

this product, the first term, Pr(0), represents the a priori degree of belief for 

the value of 6 and the second term, Pr(Data|$), is the likelihood. Fig. 10.3 

reverses the conditioning argument, and expresses the joint probability 

as the product of the overall probability of the data multiplied by the 

probability of the parameter given the data. This latter term, Pr(#|Data), 

represents the posterior degree of belief in the parameter value once the 

data have been observed. Since the joint probability of data and parameter 

value is the same no matter which way we argue, 

Pr(0) x Pr(Data|0) = Pr(Data) x Pr(0|Data), 

so that 

Pr(#|Data) 
Pr(0) x Pr(Data|0) 

Pr(Data) 

Thus elementary probability theory tells us how prior beliefs about the 

value of a parameter should be modified after the observation of data. 

We shall now apply this idea to the problem of estimating the Gaussian 

mean, p, given a single observation x. The likelihood for p is 

I (x ~ 
2\ a ) 

exp 
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If prior to observing x we believe that no value of /i is any more probable 

than any other, then the prior probability density does not vary with /i and 

the posterior probability density is proportional to the likelihood. Writing 

the likelihood as 

we see that after choosing the constant of proportionality to make the 

total probability for p equal to 1, the posterior distribution for p is a 

Gaussian distribution which has mean x and standard deviation a. The 5 

and 95 percentiles of the standard Gaussian distribution are —1.645 and 

1.645 respectively so there is a 90% probability that p lies in the range 

x ± 1.645cr. This range is called a 90% credible interval. 

When the quadratic approximation 

is used for likelihoods such as the Bernoulli and Poisson, a similar argu¬ 

ment shows that, provided the prior probability density for 9 does not vary 

with 6, then the posterior distribution for 9 is approximately Gaussian 

with mean M and standard deviation S. It follows that there is a 90% 

probability that 9 lies in the range M ± 1.645S'. 

It appears from this discussion that the frequentists and the Bayesians 

end up making very similar statements, differing only in their use of the 

words confidence and probability. But to achieve this agreement we have 

had to make the rather extreme assumption that a priori no one value 

of the parameter is more probable than any other. This is taking open 

mindedness too far and Bayesians would generally advocate the use of more 

realistic priors. When there is a large amount of data the posterior is more 

influenced by the likelihood than by the prior, and both approaches lead to 

similar answers regardless of the choice of prior. However, when the data 

are sparse, there can be serious differences between the two approaches. 

We shall return to this in Chapter 12. 

Solutions to the exercises 

10.1 When x = 104, the log likelihood ratio for p = 100 is 

2 

= -0.08. 

For x = 115,82,92 the log likelihood ratio turns out to be —1.125, —1.62, 

and —0.32 respectively. Thus only for x = 82 is the support for the true 
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value of /r less than the cut-off value of —1.353. In all other repetitions 

/i = 100 is supported. 

10.2 From tables of chi-squared, the value 3.841 is exceeded with proba¬ 

bility 0.05, so 

' x — n' 

a 
> 3.841 

with probability 0.05. The log likelihood ratio, which is minus one half of 

this quantity, is therefore less than 

-0.5 x 3.841 = -1.921 

with probability 0.05. Thus the cut-point for the log likelihood ratio is 

-1.921. 



Null hypotheses and p-values 

11.1 The null value of a parameter 

With most probability models there is one particular value of the parame¬ 

ter which corfesponds to there being no effect. This value is called the null 

value, or null hypothesis. For a parameter 6 we will denote this null value 

by 00. In classical statistical theory, considerable emphasis is placed on 

the need to disprove (or reject) the null hypothesis before claiming positive 

findings, and the procedures which are used to this end are called statisti¬ 

cal significance tests. However, the emphasis in this theory on accepting or 

rejecting null hypotheses has led to widespread misunderstanding and mis- 

reporting in the medical research literature. In epidemiology, which is not 

an experimental science, the usefulness of the idea has been particularly 

questioned. Undoubtedly the idea of statistical significance testing has 

been overused, at the expense of the more useful procedures for estimation 

of parameters which we have discussed in previous chapters. However, it 

remains useful. A null hypotheses is a simplifying hypothesis and measur¬ 

ing the extent to which the data are in conflict with it remains a valuable 

part of scientific reasoning. In recent years there has been a trend away 

from a making a straight choice between accepting or rejecting the null 

hypothesis. Instead, the degree of support for the null hypothesis is mea¬ 

sured, for example using the log likelihood ratio at the null value of the 
parameter. 

EXAMPLE: GENETIC LINKAGE BY THE SIB PAIR METHOD 

We shall illustrate the methods of this chapter with a simple statistical 

problem arising in the detection of linkage between a genetic marker and a 

gene which carries an increased susceptibility to a disease. At the marker 

locus each offspring receives one of two possible haplotypes from the mother 

and one of two possible haplotypes from the father. If there are many pos¬ 

sible haplotypes we can safely assume that the mother and father together 

have four different marker haplotypes. The marker is then said to be highly 

polymorphic. If the mother has haplotypes (a,b) and the father (c,d), possi¬ 

ble haplotype configurations for offspring are (a,c), (a,d), (b,c), and (b,d). 

If inheritance of the marker obeys Mendelian laws, the probability that 
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Table 11.1. Linkage of the HLA locus to nasopharyngeal cancer suscep¬ 
tibility 

Haplotypes 

shared 
Number of 

sib pairs 
Probability 

(null value) 
2 16 0.25 
1 8 0.50 
0 3 0.25 

two siblings have completely different marker haplotypes (no haplotypes in 

common) is 0.25 and the probability that they have the same pair of haplo- 

types (two haplotypes in common) is also 0.25. The remaining possibility 

is that they have one marker haplotype in common, which has probability 
0.50. 

If we deliberately choose two siblings who are both affected by the 

disease, then these siblings will be more similar in that part of the genome 

surrounding the disease susceptibility gene than we would expect by chance. 

If the marker locus is in this vicinity, then the probabilities that two affected 

sibs will share 0, 1, or 2 marker haplotypes will depart from the (0.25, 0.5, 

0.25) split indicated above. This way of looking for genetic linkage is called 

the affected sib pair method. If disease susceptibility is conferred by a 

dominant gene, it can be shown that the main effect of linkage is to reduce 

the probability of the affected sibs sharing no marker haplotypes and to 

increase the probability of their sharing both, while the probability of their 

sharing one marker haplotype is scarcely affected. A simple and reasonably 

efficient statistical analysis may therefore be carried out by disregarding the 

pairs sharing one marker haplotype. 

Table 11.1 shows the frequency of shared HLA haplotypes amongst 27 

pairs of sibs affected by nasopharyngeal carcinoma.* Assuming dominant 

inheritance of the disease susceptibility gene and ignoring the 8 sib pairs 

with only one marker gene in common leaves N — 19 pairs, 16 of which 

share both haplotypes, and 3 of which share no haplotypes. Let Q be the 

odds that a pair shares both rather than no haplotypes. The log likelihood 

for fl is 

161og(fI) — 191og(l + fl). 

The most likely value of is 16/3 = 5.33, so that the maximum value of 

the log likelihood is 

161og(5.33) - 19 log(6.33) = -8.29 

From Day, N.E. and Simons, J. (1976) Tissue Antigens, 8, 109—119. 
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Fig. 11.1. Log likelihood ratio for HLA linkage. 

and the log likelihood ratio for any other value of 12 is 

16log (12) - 191og(l +12) - (-8.29). 

Fig. 11.1 shows the log likelihood ratio plotted against log(12). 

Under the null hypothesis that there is no linkage, the two outcomes are 

equally probable, so the null value of 12 is 1.0 and the null value for log(12) 

is 0. This is indicated in Fig. 11.1 by the vertical line. The log likelihood 

ratio for 12 = 1 is 

161og(l) - 19log(2) - (-8.29) = -4.88 

(indicated on the graph with an arrow). The null value of 12 does not fall 

within the range which we have regarded as supported. 
Whether the mode of inheritance of disease susceptibility is dominant 

or recessive must be established in studies of extended families. If it is 
dominant, the likelihood ratio test described above provides an efficient 
test of linkage. However, if the disease susceptibility gene is recessive, the 
probability that affected sibs will share one marker haplotype in common 
is also reduced and a more efficient test for linkage examines the 16:11 split 
between 2 and < 2 shared haplotypes. In this case the null value of the 
odds parameter 12 is 0.25/0.75 = 0.333. 

Exercise 11.1. If the evidence for 12 is based on the 16:11 split of sib pairs, find 
the log likelihood ratio for 12 = 0.333. 
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11.2 Log likelihood ratios and p-values 

As with the supported range for a parameter a general need is felt to 

measure support for the null hypothesis on the more familiar scale of prob¬ 

ability. The way this is done in frequentist statistical theory is very similar 

to the way in which coverage probabilities are calculated for confidence 

intervals (see Chapter 10). We imagine a large number of repetitions of 

the study with the parameter equal to its null value and define the p-value 

as the proportion of these studies which provide less support for the null 

value than the data actually observed. If the p-value is small the data are 

at odds with the null hypothesis and the finding is said to be statistically 

significant. If the p-value is large, the finding is said to be not statistically 

significant. Traditionally the value p — 0.05 has been used to divide signif¬ 

icant from non-significant results, but the modern practice is to report the 

actual p-value, particularly when it lies in the range 0.001 to 0.10. Outside 

this range it is enough to give the p-value as p < 0.001 or p > 0.10. 

The argument which defines the p-value closely follows that used to 

define the coverage probability of a supported range in Chapter 10. As in 

that case, we shall start with the problem of drawing conclusions about the 

value of the Gaussian mean, p, on the basis of a single observation, x. In 

this case, the value of the log likelihood ratio for a null value /r0 is equal 

to 

Exercise 11.2. You observe a value x — 116 and wish to test the hypothesis 

that it was obtained from a Gaussian distribution with mean p = 100 (the null 

value). Assuming that a is known to take the value 10, what is the value of the 

log likelihood ratio at the null value? 

We imagine a large number of repetitions of the study when the null hy¬ 
pothesis is true. The p-value is the proportion of such repetitions with log 
likelihood ratios less than this observed value. One way that the p-value 
can be calculated is by computer simulation of such repetitions of the study. 

Exercise 11.3. Such a simulation is envisaged in Exercise 10.1. Of the first four 

values generated, what proportion have log likelihood ratios at the null value less 

than that observed? 

This is a very inaccurate estimate of the p-value. An accurate estimate 

would, of course, require several thousand repetitions to be generated. 

The method of generating a p-value by computer simulation is known 

as a Monte Carlo test and it is quite widely used. However, in this case 

we do not need to resort to the computer as we can work out the p-value 

theoretically. If X represents the value obtained in such a repetition, the 

p-value is defined as the probability that this yields a smaller log likelihood 
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ratio than that observed, that is, 

2 

Pr 

This is the same as 

[ 1 (X-p0\ 

2 { ° ) 
< Observed log likelihood, ratio 

Pr y _2 x (Observed log likelihood ratio) 

and since we are assuming that the null hypothesis is true in such repeti¬ 

tions, the above probability is obtained by referring 

—2 x (Observed log likelihood ratio) 

to the chi-squared distribution on one degree of freedom. 

Exercise 11.4. Use the table of the chi-squared distribution in Appendix D to 

find the p-value for the example of Exercise 11.2 

For N observations from a Gaussian distribution, the same rule for obtain¬ 

ing the p-value holds, the value of minus twice the log likelihood ratio now 

being 

where M is the mean of the N observations and S = a/VN. 
This relationship between the log likelihood ratio and the p-value holds 

approximately for non-Gaussian log likelihoods. The approximation will be 

adequate providing there is a sufficient amount of data to ensure that the 

log likelihood curve is approximately quadratic. 
In our example of testing for genetic linkage, using the method most 

appropriate for dominant inheritance, the log likelihood ratio at the null 

parameter value is —4.88 so that 

—2 x (log likelihood ratio) = 9.76. 

The probability of this being exceeded in a chi-squared distribution on one 
degree of freedom is 0.0018, so that the p-value is approximately 0.002. 
This is an example of a log likelihood ratio test. 

Exercise 11.5. Use tables of the chi-squared distribution to find the p-value 

corresponding to the log likelihood ratio calculated in Exercise 11.1. 

There are two other approximate methods of obtaining p-values which are 

widely used. These are called Wald tests and score tests, and both involve 
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quadratic approximations to the log likelihood curve. The problem of cal¬ 

culating exact p-values when these approximate methods cannot be used 
will be discussed in Chapter 12. 

11.3 Wald tests 

The first quadratic approximation we shall consider is the same as that 

used for approximate confidence intervals in Chapter 9. For a parameter, 

9, the log likelihood is approximated by the quadratic curve 

1 /M-9\2 

~2 V-) 
where M is the most likely value of the parameter and S is the standard 

deviation of the Gaussian approximation, calculated from the curvature of 

log likelihood at its peak. This provides the closest possible approximation 

in the region of the most likely value. Using this approximation, the ap¬ 

proximate value of minus twice the log likelihood ratio at the null value, 

00, is 

For the log odds parameter of the Bernoulli likelihood, Q, the values of 

M and S are 

M = lo«(jWTi) 

s = \[~D + N -~D' 

For the log likelihood shown in Fig. 11.1, 

M 

S 

1.674 

— + - = 0.629. 
16 3 

The approximate log likelihood ratio curve corresponding to these values 

is shown in Fig. 11.2 (broken lines). The arrow indicates the approximate 

log likelihood ratio at the null value, log(fi) = 0.0, 

1 /1.674- 0.0 \ 

_ 2 V 0.629 J = -3.54 



102 NULL HYPOTHESES AND P-VALUES 

The approximate value of minus twice the log likelihood ratio is 

/1.674 - 0.0\ 

V 0.629 ) 
7.08 

and referring this value to the chi-squared distribution yields an approxi¬ 
mate p-value of 0.008. This method of obtaining an approximate p-value 
is called the Wald test. 

Exercise 11.6. Carry out the Wald test which approximates the log likelihood 

ratio of Exercise 11.1. 

11.4 Score tests 

The second quadratic approximation to the log likelihood ratio which we 

consider is based on the gradient and curvature of the log likelihood curve 

at the null value of the parameter. This is the most accurate quadratic 

approximation in the region of the null value. This approximation to the 

log likelihood ratio of Fig. 11.1 is shown in Fig. 11.3. Here we have displaced 

the true log likelihood ratio curve upwards in order to demonstrate that 

the true and approximate curves are the same shape in the region of the 

null value. 
If U is the gradient of the log likelihood at the null value of the param¬ 

eter, and V is minus the curvature (also at the null value), then this 
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approximation to the log likelihood ratio is given by the formula 

vie-Oz-u/v)2 
2 

This approximate curve has its maximum value at do + U/V and twice the 

log likelihood ratio at 6 = 6® is 

(U)2 

V ' 

The gradient, U, is called the score and we shall call V the score variance. 

The approximate score test is carried out by comparing (U)2/V with the 

chi-squared distribution with one degree of freedom^ 

For the Bernoulli log likelihood in terms of the log odds parameter, 

log(fi), the score and score variance at the null value Oq are most easily 

expressed in terms of the null value of the probability parameter, 

_ ^0 

^ “ 1 + ‘ 

tThe score test is usually carried out using the expected value of V (worked out 

assuming the null hypothesis to be true). In the applications discussed in this book this 

is not usually possible, and we have defined the score test in terms of the observed value 

of V. 
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They are 

U = D-Nn0, 

V = Nn0(l-7r0). 

In our example, D = 16, N = 19, and n0 — 0.5 so that 

U 

V 

16-9.5 = 6.5 

19 x 0.5 x 0.5 = 4.75 

The score test is (6.5)2/4.75 = 8.89 and the probability that chi-squared 
exceeds this value is 0.003. 

Exercise 11.7. Carry out the score test which approximates the log likelihood 

ratio of Exercise 11.1. 

11.5 Which method is best? 

The methods for calculating p-values given in this chapter are approximate 

except for the special case of a Gaussian likelihood with known standard 

deviation a, when the three methods coincide and yield exact p-values. In 

other cases, where the log likelihood is roughly quadratic, the approxima¬ 

tions to the p-value are good and the three methods give similar answers. 

When the three methods give seriously different answers this means that 

the quadratic approximations are not sufficiently close to the true log like¬ 

lihood curve over the region stretching from the null value of the parameter 

to the most likely value. Of course, if the most likely value and the null 

value are very far apart, the curve is very difficult to approximate. In this 

situation, all three methods will give very small p-values and although these 

may differ substantially from on another, the choice of statistical method 

would not affect our scientific conclusions. This is the case in our example 

in which the three methods gave p-values of 0.002, 0.008, and 0.003. 

The log likelihood ratio test is the only one of the three tests which 

remains the same when the parameter is transformed, and is to be preferred 

in general. The approximate equivalence of the other two tests to the log 

likelihood ratio test depends on the quadratic approximation, and will be 

improved by choosing an appropriate scale for the parameter. In particular, 

for parameters such as the odds, or the rate, which can take only positive 

values, it is better to calculate Wald and score tests in terms of the log 

parameter. If the three methods differ seriously, even after choosing an 

appropriate scale for the parameter, it is usual to advise the use of exact 

p-values. Methods for calculating these will be discussed in Chapter 12, 

but these are not without their difficulties. 
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11.6 One-sided p-values 

We have defined the p-value as the probability that, when the null hypoth¬ 

esis is true, a repeated study will provide less support for the null value of 

the parameter than did the study actually observed. We have measured 

support for the null value of the parameter as the difference between the 

log likelihood at the null value and the log likelihood at the most likely 

value. This is satisfactory when the model allows the parameter to take 

any value within its natural range, but needs to be redefined if the model 

allows the parameter to vary only within a restricted range. In our HLA 

linkage example, if Q is the odds that a sib pair shares both haplotypes 

rather than neither, the null value is H = 1 and linkage is indicated by 

values in the range fl > 1. Values in the range fl < 1 are not allowed in 

a model for genetic linkage. In these circumstances, the value of Q which 

is best supported by a study in which 5 sib pairs are found to share both 

haplotypes and 10 sib pairs to share neither is no longer 5/10, since this 

parameter value is not allowed by the model. The best supported value 

amongst allowable values is fi = 1. Thus only studies in which the split is 
in the expected direction would be regarded as providing evidence against 

the null hypothesis. The p-value calculated from this viewpoint is called 

a one-sided p-value, while the more usual p-value appropriate when the 

model allows the parameter to take values to both sides of the null value 

is called a two-sided p-value. 
Approximate one-sided p-values can be obtained in most circumstances 

by simply halving the corresponding two-sided p-value. This follows from 

the fact that approximately half of the hypothetical repetitions of the study 

under the null hypothesis would lead to results in the wrong direction and, 

in a one-sided test, these would not be treated as evidence against the 

null value. In our example, the log likelihood ratio test for linkage gave 

p ta 0.0018 and the approximate one-sided p-value is 0.0009. 

The assumption that the probability model only allows its parameter to 

take on values to one side of the null value is a strong one and rarely justified 

in practice. Thus, one-sided p-values should only be used in exceptional 

circumstances. The genetic linkage example is one of these. 

11.7 Tests for the rate parameter 

We have described the three methods for obtaining approximate p-values 

using a null hypothesis which concerns the parameter of a simple binary 

probability model. These methods were all based on the Bernoulli likeli¬ 

hood. In this section we shall describe the corresponding methods for the 

rate parameter, A, for a cohort study. Here the log likelihood takes the 

Poisson form: 

D log(A) - AF, 
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where D is the number of failures observed and Y is the person-years 

observation. 
The log likelihood ratio test for the null value A = A0 compares the log 

likelihood at A0 with the log likelihood at A = D/Y, the most likely value. 

The log likelihood ratio is, therefore, 

[D log(A0) — A0y] 

which simplifies to 

-D\og(tffj+(D-E), 

where E = A0F is the ‘expected’ number of failures obtained by multiply¬ 

ing the null value of the rate parameter by the person-years observation in 

the study. Minus twice this value can be compared with the chi-squared 

distribution with one degree of freedom. 

The Wald test is based on the best Gaussian approximation to the log 

likelihood in the region of the most likely value. It is best carried out on 

the log(A) scale, where M — log (D/Y) and S = yJl/D. 

Finally, the score test is based on the best Gaussian approximation to 

the log likelihood in the region of A0. Some simple calculus shows that the 

score and score variance (on the log(A) scale) are given by 

U = D — E, V = E, 

so that the score test is (D — E)2/E. 
The null hypothesis most frequently of interest is that the rate in the 

cohort is no different from the rate in a reference population. Typically 
this reference rate is based on official statistics for a whole country and 
is estimated from so many events that it can be assumed to be a known 
constant. In practice the expected number of failures is usually calculated 
separately for different age bands and summed and E refers to the total 
expected number added over age bands. In Chapter 15 we show that the 
theory described above extends without change to this situation. 

Exercise 11.8. In the vicinity of a nuclear reprocessing plant, 4 cases of child¬ 

hood leukaemia were observed over a certain period while, from national registra¬ 

tion rates, we would have expected only 0.25. Compare the log likelihood ratio 

and score tests of the null hypothesis that the incidence rates of leukaemia in the 

area do not differ from the national rates.* 

In this case the two methods differ considerably, although both suggest 

a very small p-value. This reflects the fact that D is very small and the 

*These data are discussed in detail by Gardner, M.J. (1989) Journal of the Royal 
statistical Society, Series A, 152, 307-326. 
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Gaussian approximations are unreliable. We shall discuss methods for use 

in such situations in Chapter 12. 

11.8 Misinterpretation of p-values 

Reporting of p-values has come into disfavour because they have been 

widely misinterpreted. Although the same is true of confidence intervals, 

the nature of the misinterpretation of these is much less serious. 

Most scientists interpret the 90% confidence interval as a range within 

which there is a 90% probability that the parameter value lies. We saw in 

Chapter 10 that, in the frequentist view of statistics, this is not correct 

— such an interpretation requires probability to be interpreted in terms of 

subjective degree of belief. In practice, however, it is not a serious error and 

does not usually lead to serious scientific misjudgement. The corresponding 

misinterpretation of the p-value, as the probability that the null hypothesis 

is true, is a. much more serious error. Small studies which should be quite 

unconvincing are quoted as strongly negative findings because they have 

large p-values. The fact that this error is still widespread is the main reason 

why many authors currently discourage the use of p-values. 

11.9 Lod scores and p-values 

Our example in this chapter concerns genetic linkage and geneticists have 

taken a rather different approach to measuring the amount of evidence 

against the null hypothesis. Typically the result of a linkage analysis is 

presented as a lod score defined in terms of the log (base 10) likelihood for 

a parameter, 6, where this is defined as one minus the probability that two 

genes are passed from parent to offspring together. This probability is 0.5 

when the two loci are unlinked but greater than 0.5 when there is linkage. 

Thus the null value of 6, which is called the recombination fraction, is 0.5 

and linkage is represented by 6 < 0.5. The lod score for any specified value 

of 9 compares the log likelihood with its value at 9 — 0.5. It is conventional 

to consider linkage to have been demonstrated if the most likely value of 9 

is less than 0.5 and gives a lod score greater than 3.0. 
Using the relationship between the different systems of logarithms ex¬ 

plained in Appendix A, a lod score of 3.0 corresponds to 

—2 x (log likelihood ratio) = 13.82 

and, referring this to the chi-squared distribution on one degree of freedom 

shows this to be approximately equivalent to a p-value of 0.0002. However, 

since we are only interested in values of 9 less than 0.5, the test is one-sided 

and this value must be halved to yield p ~ 0.0001. This is much smaller 

than we would require p-values to be in other areas of research, and it would 

appear that geneticists are much more difficult to dissuade from the null 
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hypothesis than other scientists. This is usually justified on the grounds 

that the human genome is immense and, a priori, it is very unlikely that any 

one marker locus is linked to a disease susceptibility gene. This argument 

has considerable force when searching a large number <t&markers in a ‘blind 

fishing expedition’, but would not hold if there were good a priori reasons 

to suspect linkage in a specified region. The interpretation of lod scores, 

like that of p-values, must take account of the scientific context and rigid 

criteria should be avoided. 

Solutions to the exercises 

11.1 At the most likely value, = 16/11 = 1.455, the log likelihood is 

16 log(1.455) - 27 log(2.455) = -18.249 

while at the null value = 0.333, the log likelihood is 

16 log(0.333) - 27 log(1.333) = -25.354. 

The log likelihood ratio at the null value is therefore 

-25.354 - (-18.249) = -7.105. 

11.2 The value of the log likelihood ratio at p = 100 is 

11.3 The first four observations of the computer simulation were 104, 115, 

82 and 92 and the solution to Exercise 10.1 showed that the corresponding 

values of the log likelihood ratio at p = 100 are —0.08, —1.125, —1.62 and 

—0.32. Only 1 of these is less than the observed log likelihood ratio — a 

proportion of 0.25. 

11.4 The value of minus twice the observed log likelihood ratio is 2.56 and 

referring this to the table of the chi-squared distribution in Appendix D 

shows the p-value to be a little over 0.10. 

11.5 Minus twice the log likelihood ratio is 14.21. This corresponds to a 

very small p-value, 0.00016. Such results are usually reported as p < 0.001. 

11.6 The most likely value of the log odds parameter is 

M = log(16/ll) - 0.375, 
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and the standard deviation of the Gaussian approximation to the log like¬ 

lihood around M is 

0.392. 

The null value of the log odds is log(0.333) = —1.100 so that the Wald test 

is 
0.375 - (-1.100) V 

0.392 ) 
14.16. 

This is very close to minus twice the log likelihood ratio and the approxi¬ 

mate p-value is 0.00017. 

11.7 The null value for the probability parameter is 7r0 = 0.25 so that 

U = 16 - 27 x 0.25 = 9.25, 

V = 27 x 0.25 x 0.75 = 5.0625. 

The score test is 

and p-value is less than 0 

(9.25)5 

5.0625 
= 16.90 

.001. 

11.8 The log likelihood ratio chi-squared value is 

4 
-2 x -4 log 

0.25 
+ (4 - 0.25) = 14.681. 

The score test is 
(4-0.25)5 

025 
= 56.250. 

Both give p < 0.001. 
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12 
Small studies 

In small studies the shape of the log likelihood for a parameter can be ap¬ 

preciably different from the quadratic shape of the Gaussian log likelihood 

and p-values and confidence intervals based on Gaussian approximations 

can then be misleading. It is conventional in such situations to report 

exact p-values and confidence intervals. In this chapter we will explain 

how these are conventionally calculated, while drawing attention to some 

serious difficulties. 

12.1 Exact p-values based on the binomial distribution 

Consider again the example in Chapter 11 concerning genetic linkage be¬ 

tween a gene which renders a subject susceptible to a disease, and a marker 

gene. The test for linkage was based on the 16 sib pairs with two haplo- 

types in common and the 3 pairs with no haplotypes in common, so the 

log likelihood for ft, the odds of having two haplotypes in common, is 

161og(fil) — 191og(l + ft). 

The most likely value of ft is 16/3 = 5.33 and the log likelihood takes its 

maximum value of —8.29 at this value of fib The value fil = 1 corresponds 

to no linkage and the log likelihood ratio for fif = 1 is therefore 

161og(l) - 19 log(l + 1) - (-8.29) = -4.88. 

The corresponding p-value is defined as the probability of obtaining a log 

likelihood ratio, less than —4.88, during many repetitions of the study in 

which fi2 = 1. In the last chapter this probability was obtained approx¬ 

imately from the chi-squared distribution; the problem now is to find its 

exact value. 

Each new repetition of the study will give rise to a log likelihood ratio 

for 12 = 1. To calculate this it is necessary to go through the same steps as 

for the split of 16:3. For example, a repetition in which the split was 10:9 

gives a log likelihood for ft of 

10 log(fii) — 19 log(l + ft). 
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Table 12.1. A computer simulation and the binomial distribution 

Split 

Log likelihood ratio 

Two-sided One-sided 

Simulated 

frequency 

Binomial 

probability 

0:19 -13.17 0 0 0.000002 

1:18 -9.25 0 1 0.000036 

2:17 -6.78 0 17 0.000326 

3:16 -4.88 0 112 0.001848 

4:15 -3.39 0 512 0.007393 

5:14 -2.22 0 1777 0.022179 

6:13 -1.32 0 4519 0.051750 

7:12 -0.67 0 9238 0.096107 

8:11 -0.24 0 14523 0.144161 

9:10 -0.03 0 18160 0.176197 

10:9 -0.03 -0.03 18035 0.176197 

11:8 -0.24 -0.24 14857 0.144161 

12:7 -0.67 -0.67 9675 0.096107 

13:6 -1.32 -1.32 5278 0.051750 

14:5 -2.22 -2.22 2306 0.022179 

15:4 -3.39 -3.39 750 0.007393 

16:3 -4.88 -4.88 194 0.001848 

17:2 -6.78 -6.78 38 0.000326 

18:1 -9.25 -9.25 7 0.000036 

19:0 -13.17 -13.17 1 0.000002 

The most likely value for Q is 10/9 = 1.11 and the maximum value of the 

log likelihood is 

lOlog(l.ll) - 19 log(l + 1.11) = -13.14. 

The log likelihood for Q = 1 based on this split is therefore 

101og(l) - 19 log(l + 1) - (-13.14) = -0.03. 

Exercise 12.1. Calculate the log likelihood ratio for 0 = 1 when the split 

between the two outcomes is 15:4. 

For a split such as 4:15, the log likelihood ratio depends on whether we 

regard the model as allowing values of Q less than one. If not, then the 

best supported value of given such a split is 1, and the log likelihood 

ratio is zero. In this case a one-sided p-value is appropriate. 
The way the log likelihood ratio for Q = 1 depends on the observed 

split is shown in full in Table 12.1, for both two-sided and one-sided views 
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Fig. 12.1. Generating the binomial distribution. 

of the problem.* In the two-sided case, the splits 2:17, 1:18, 0:19 and 17:2, 

18:1, 19:0 all produce log likelihood ratios which are less than —4.88, and 

the splits 3:16 and 16:3 produce log likelihood ratios equal to —4.88. In the 

one-sided case, the splits 17:2, 18:1, and 19.0 give log likelihood ratios less 

than —4.88 and the split 16:3 gives a log likelihood ratio equal to —4.88. To 

find the p-values exactly we need to find the probabilities of the different 

splits when ft — 1. 

One way of calculating these p-values is to use a Monte Carlo approach 

similar to that described in Chapter 11. A computer program is written 

which splits the 19 sib pairs between the two outcomes with odds 1, and 

repeats the process (say) 100 000 times. The result of doing this is shown 

in the third column of Table 12.1. Out of 100 000 repetitions of the study, 

none produced the split 0:19, one produced the split 1:18, 17 produced the 

split 2:17, and so on. The probabilities of the different splits are therefore 

estimated by the computer to be 0.00000, 0.00001, 0.00017, and so on. 
As in the case of the Gaussian mean, the probabilities can also be 

worked out theoretically, in this case using the binomial distribution. 
Fig. 12.1 illustrates the derivation of the binomial distribution. The first 
level of branching represents the possible outcomes of the first observation, 
the upper branch indicating failure (with probability n) and the lower 
branch indicating survival (with probability 1 — tt). The second level of 
branching represents the outcome of the second observation. The proba¬ 
bility that both subjects fail is {tt)2 and the probability that both survive is 
(1 — 7r)2; the remaining two possibilities both have one failure and one sur- 

*When calculating these log likelihood ratios when the splits are 0:19 or 19:0, note 
that the expression 0 log(0) takes the value 0. 
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vivor and, since we do not need to differentiate between these, the branches 
are allowed to merge, with a total probability of 27r(l — n). The diagram 
continues with the inclusion of a third observation. The probability that all 
three observations are failures is now (vr)3 and that all three are survivors 
is (1 — 7r)3. The remaining probabilities correspond to 2:1 and 1:2 splits 
of failures to survivors and have probabilities 3(7t)2(1 — n) and 37r(l — n)2 
respectively, the multiplier 3 arising because each of these points represents 
the merging of 3 paths through the tree. 

Exercise 12.2. Continue the diagram to generate the probabilities for all pos¬ 

sible splits of AT = 4 observations and also for N = 5. 

When this process is continued it leads to the general result that the prob¬ 
ability that N observations split as D failures and N — D survivors is 

C(D,N)(n)D(l -n)N~D. 

where C(D,N), the number of ways of selecting D objects from N, is 1 
when D = 0 or D = N and 

N x (N — 1) x • • • x (N — -D + 1) 

Dx(D-l)--x2xl 

otherwise. Binomial probabilities may easily be calculated by computer, 
and tables are available for values of N and D up to about 20. 

The binomial distribution with N = 19 and n = 0.5 is shown in the 
fourth column of Table 12.1. A comparison between the third and fourth 
columns of this table shows that the values estimated by the Monte Carlo 
method are quite close to the correct values, particularly in the centre of 
the distribution. 

One of the areas of dispute when defining an exact p-value is whether 
to define this as the probability of obtaining a log likelihood ratio less than 
-4.88 or less than or equal to -4.88. This difficulty does not arise with the 
Gaussian log likelihood because the probability of any one precise outcome 
is zero, but it does arise here; in the two-sided case the splits 3:16 and 
16:3 both give rise to the observed log likelihood ratio of —4.88 and have 
probabilities 0.001848. If these splits are excluded, the two-sided p-value 

is 

0.000002 + 0.000036 + 0.000326 + 0.000002 + 0.000036 + 0.000326 

which adds up to 0.000728. If these splits are included, two further contri¬ 
butions of 0.001848 must be included and the two-sided p-value is 0.004424. 
Conventionally, splits giving rise to the observed log likelihood ratio are in¬ 
cluded, but there are arguments in favour of including only one half of the 
probability for these splits. This course of action gives the mid-p value. In 

our example the mid-p value is 0.002576. 
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Table 12.2. Log likelihood ratios and probabilities (N = 27, n = 0.25) 

Split LLR Probability Split LLR Probability 

0:27 -7.767 0.000423 14:13 -4.452 0.001775 

1:26 -4.589 0.003810 15:12 -5.699 0.000513 

2:25 -2.835 0.016509 16:11 -7.096 0.000128 

3:24 -1.645 0.045858 17:10 -8.647 0.000028 

4:23 -0.836 0.091716 18:9 -10.357 0.000005 

5:22 -0.323 0.140632 19:8 -12.233 0.000001 

6:21 -0.057 0.171883 20:7 -14.288 

7:20 -0.006 0.171883 21:6 -16.536 

8:19 -0.149 0.143236 22:5 -18.999 

9:18 -0.469 0.100796 23:4 -21.709 

10:17 -0.956 0.060477 24:3 -24.716 

11:16 -1.603 0.031155 25:2 -28.103 

12:15 -2.403 0.013847 26:1 -32.054 

13:14 -3.353 0.005326 27:0 -37.430 

If these arguments are repeated for one-sided p-values it can be seen 
that, whichever convention is adopted, the one-sided p-value is half of the 
two-sided value. This is not generally true and is only the case here because 
of the symmetry of the binomial distribution in this case. This in turn 
derives from the fact that the null value of Q is 1, corresponding to 7r = 0.5. 
For a test of the null value 7r = 0.25, the relationship between one- and 
two-sided p-values is not as simple. 

Exercise 12.3. In the genetic linkage example, one of the tests for linkage com¬ 

pares the observed split of the 27 sib pairs into 16 with two haplotypes in common 

and 11 with one or zero in common with the probabilities 0.25 and 0.75 under the 

hypothesis of no linkage. The log likelihood ratios and probabilities correspond¬ 

ing to the different possible splits are shown in Table 12.2 (probabilities less than 

0.000001 are omitted). Find the exact two-sided p-value for the hypothesis of no 

linkage. 

In this exercise the probability distribution for the different splits is not 

symmetric and the one-side p-value cannot be obtained by halving the 

two-sided value. In such situations there is no general agreement about 

how two-sided p-values should be calculated, because there is no general 

agreement about how to compare extremeness of splits at opposite ends of 

the distribution. We have chosen to measure extremeness in terms of the 

log likelihood ratio, but other criteria are also used and lead to different 

two-sided p-values. 



THE POISSON DISTRIBUTION 115 

Table 12.3. Log likelihood ratios and probabilities (77 = 0.25) 

Cases LLR Probability 

0 -0.25 0.778801 
1 -0.64 0.194700 
2 -2.41 0.024338 

3 -4.70 0.002028 
4 -7.34 0.000127 

5 -10.23 0.000006 

6 

etc. 

-13.32 0.000000 

12.2 The Poisson distribution 

When the population at risk, N, is very large and the probability of failure, 

7r, is very small, the binomial distribution takes on a very simple form, 

called the Poisson distribution: 

^(V)D exp(-rj) 

where D\ denotes D factorial 

Dx{D- I)- - x 2 x 1 

and 77 = Nn. The same is approximately true of the number of failures in a 

cohort subject to rate A and with Y person-years of observation. Providing 

we can regard Y, at least approximately, as a fixed constant then the 

probability of D failures is given by the Poisson distribution with 77 = AY. 
The main use of the Poisson distribution is to calculate the p-value 

corresponding to the null hypothesis which states that the rate in the study 

cohort is the same as a reference rate, A*. The null value of 77 is E = A*T, 

the expected number of cases. Given 77 = E, the Poisson distribution tells 

us the probability for any value of D. The idea extends to the case where 

the expected number of cases is calculated taking account of variation of 

rates with time. 
To illustrate the use of the Poisson distribution, we return to our exam¬ 

ple of leukaemia surrounding a nuclear reprocessing plant (Exercise 11.8). 

In that case the expected number of failures was 0.25 and the Poisson prob¬ 

abilities for each possible value of D are shown in Table 12.3. The table 

also lists the corresponding values of the log likelihood ratio for the null 

hypothesis, which we showed in Chapter 11 to be given by the expression 

-D\og[^j+{D-E). 
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Table 12.4. Definition of the exact confidence interval 

Probability 

Cases (77 = 1.3663) (77 = 9.1535) 

0 0.25505 0.00011 '^v 

1 0.34847 0.00097 

2 0.23806 0.00443 

3 0.10842 0.01353 

4 0.03703 0.03096 

5 0.01012 0.05668 

6 0.00230 0.08647 

7 0.00045 0.11307 

8 

etc. 

0.00001 0.12938 

The observed number of cases of leukaemia was 4 and the corresponding 

log likelihood ratio —7.34. To find the p-value we add the probabilities of 

all values of D with log likelihood less than or equal to —7.34 : 

0.000127 + 0.000006 + 0.000000 = 0.000133. 

Note that, in this case, there is no difference between the one- and two-sided 

p-values. 

12.3 Exact confidence intervals 

An exact confidence interval for a parameter is defined in terms of exact 

p-values. The lower limit of the 90% interval for a parameter 0 is found 

by searching for the null value, 00, whose p-value is exactly 0.05. Here, 

the one-sided p-value which assumes that 9 > 9@ is used. The upper limit 

is defined similarly, save for the fact that the reverse one-sided p-value is 

used, that is the p-value under the assumption 9 < 9@. The search for 

these values must be carried out by computer and is laborious, although 

computational methods have been considerably improved in recent years. 

Table 12.4 illustrates the idea of exact confidence intervals using the 

leukaemia data discussed above. Poisson distributions are shown for two 

values of 77 = 9E. Both values give one-sided p-values of approximately 

0.05 when the observed number of cases is 4, since 

0.03703 + 0.01012 + 0.00230 + 0.00045 + 0.00001 = 0.04991 

and 

0.00011 + 0.00097 + 0.00443 + 0.01353 + 0.03096 = 0.05000. 
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Thus values of 9E smaller than 1.3663 and values larger than 9.1535 have 

one-sided p-values smaller than 0.05. Since E = 0.25, the exact confidence 

interval for 9 lies between 1.3663/0.25 = 5.465 and 9.1535/0.25 = 36.614. 

Exact confidence intervals are only exact in the sense that they are 

derived from exact p-values. They do not necessarily have coverage proba¬ 

bilities exactly equal to 0.90. For the Gaussian mean, p, when the standard 

deviation is known, an exact 90% confidence interval does have a coverage 

probability of exactly 0.90, but for parameters of other models this is often 

not the case. This is because, in these cases, the coverage probability de¬ 

pends on the unknown true value of the parameter. Thus, exact confidence 

intervals are not exact in any scientifically useful sense. 

This observation, taken together with the fact that there are several 

different ways in which exact p-values may be defined, lead us to doubt the 

practical usefulness of exact methods. Instead we would argue that, since 

it is the log likelihood which measures the support for different values of 

the parameter, scientific papers should aim to communicate the log likeli¬ 

hood accurately and concisely. For large studies Gaussian approximations 

allow us to communicate the log likelihood curve using only M and S, the 

most likely value and a standard deviation. For small studies it might be 

necessary to report the log likelihood in greater detail. 

12.4 A Bayesian approach 

The Bayesian approach goes further and uses the likelihood to update a 

prior distribution for the parameter into a posterior distribution, using 

Bayes’ rule as described in Chapter 10. No new difficulties are introduced 

by the fact that a study is small, apart from the inevitable consequence that 

the information in the likelihood will also be small, so the posterior distri¬ 

bution will not be much different from the prior distribution. This means 

that conclusions depend more upon our prior beliefs about the parameter 

in a small study than they would in a large study. 
Similar answers to those yielded by the classical exact approach can 

be obtained using Bayesian arguments if it is assumed a priori that we are 

completely ignorant about the value of the parameter. Such an assumption 

is called a vague prior belief and holds that no value of the parameter is 

any more probable than any other value, so that the prior distribution is 

flat. One difficulty is that a flat prior for a parameter 6 is not flat with 

respect to log(0), so a flat prior for 9 and a flat prior for log(0) lead to 

different posterior beliefs. 
This may be illustrated by our example of leukaemia in the neighbour¬ 

hood of a nuclear plant, where the observed number of cases was D = 4 

while the expected number from national rates was E = 0.25. It is con¬ 

ventional to compare rates in the study population with reference rates by 

the ratio of observed to expected cases, in this case 4/0.25 = 16.0. This 
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6 

Fig. 12.2. Log likelihood for the leukaemia data (D — 4, E = 0.25). 

Table 12.5. Posterior distributions for 9 for three vague priors 

Prior 

(flat with 

respect to) 

Posterior probability distribution for 9 

Mean 

90% probability interval 

Lower limit Upper limit 

Probability 

9 < 1.0 

log(0) 16.0 5.5 31.0 0.000133 

9 20.0 7.9 36.6 0.000007 

V9 18.0 6.6 33.8 0.000030 

may be regarded as the most likely value of the parameter, 9, of the Pois¬ 

son probability model with rj — 9E. The parameter 6 may be regarded as 

an index of mortality in the cohort, relative to national rates.t The log 

likelihood for 6 remains Poisson in form and is plotted in Fig. 12.2. 

In Bayesian statistics we start with the prior distribution for 6 and mul¬ 

tiply it by the likelihood to obtain the posterior distribution. The posterior 

distribution is then used to calculate the (subjective) probability that 9 lies 

in a given range. Table 12.5 summarizes the results of such calculations for 

the leukaemia data for three different prior belief distributions — each of 

them vague in some sense. 
According to these analyses, it is almost certain that there is an effect 

tA fuller discussion of this model will be encountered in Chapter 15. 
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Table 12.6. Posterior distributions for 9 for three realistic priors 

Prior Posterior probability distribution for 9 

belief 

(90% limits) Mean 

90% probability interval 

Lower limit Upper limit 

Probability 

9 < 1.0 

0.3-2.0 2.00 0.97 3.33 0.06 

0.5-1.6 1.37 0.83 2.02 0.15 

0.7-1.3 1.15 0.82 1.52 0.25 

of living near Sellafield and the magnitude of this effect, as measured by 

the mean of the posterior distribution, is very large. Unfortunately, these 

conclusions are not scientifically credible. Ratios of observed to expected 

cases of 5 are extremely rare in epidemiology when the numbers of cases are 

large. This is true even for studies of heavily exposed versus completely 

unexposed groups, and we would expect much smaller ratios for groups 

defined only in terms of area of residence. That 5.5 is the lowest plausible 

value for 9 does not seem to be a reasonable conclusion. 
The problem lies with the choice of prior distributions. Prior to seeing 

these data, no epidemiologist would seriously have believed that 9 = 1000 

and 9 — 2 are equally probable. Bayesian analyses with more realistic prior 

distributions give more sensible answers. Table 12.6 shows the results of 

analysis for three epidemiologists with more realistic prior beliefs. All these 

prior distributions have mean 1.0, indicating that the epidemiologists have 

no prior expectation of elevated rather than reduced risk of disease, but 

they do differ in the range of values of d, around 1.0, which they consider 

believable.* 

Exercise 12.4. With which of the three epidemiologists would you most closely 

identify yourself? 

The conclusions of the three epidemiologists after seeing the data still 

differ substantially. All tend towards the belief that there is an elevated risk 

but the extent of the increase is now a lot less than before. The Bayesian 

approach has therefore shown that such a small study as this cannot lead to 

identical beliefs within the scientific community. The posterior distribution 

is too influenced by prior belief and too little by the data. 

tpor mathematical convenience only, all three distributions have been chosen from 

the chi-squared family. 
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Solutions to the exercises 

12.1 For a 15:4 split, the log likelihood is 

15 log(fi) — 19 log(l + 12), 

which takes its maximum value when 0 = 15/4 = 3.75. The values of the 

log likelihood when O takes on values of 3.75 and 1 are, respectively 

151og(3.75) — 191og(4.75) = -9.778, 

15 log(l) — 19 log(2) = -13.170. 

The log likelihood ratio at 12 = 1 is the difference between these, which is 

-3.392. 

12.2 Fig. 12.3 shows the extension of the diagram from N = 3 to N = 4 

and N = 5. The numbers in boldface represent the values of C(D, N). 

12.3 Table 12.2 shows that when the observed data are a 16:11 split, the 

log likelihood ratio for n = 0.25 is -7.096. The two-sided p-value is the sum 

of the probabilities for those outcomes leading to log likelihood ratios at 

least this small, that is 

0.000128 + 0.000028 + 0.000005 + 0.000001 

+0.000423 
= 0.000585. 

12.4 There is no solution to this exercise! 
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47r(l — 7r) 3 

(7r)5 

5(7r)4(l — 7r) 

10(7t)3(1 — 7r)2 

10(7t)2(1 — 7r)3 

57t(1 — 7r)4 

(1-vr)5 

Fig. 12.3. Binomial distributions with TV = 4 and N = 5. 
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Likelihoods for the rate ratio 

In previous chapters we have introduced the main ideas of probability mod¬ 

els in epidemiology and discussed the use of likelihood to provide an es¬ 

timate, confidence interval or p-value for the parameter of a probability 

model. Although we have used the joint log likelihood for several parame¬ 

ters our discussion of confidence intervals and p-values has been based on 

probability models with only a single parameter. We now consider proba¬ 

bility models with two or more parameters. 

13.1 Comparing rates using the rate ratio 

A simple and important problem which involves two parameters is the com¬ 

parison of two rates, for example for a cohort which was exposed to some 

environmental factor and an unexposed cohort. The probability model 

which underlies such a comparison has parameters corresponding to the 

rates of failure in the two cohorts. We shall use a subscript notation to 

denote exposure groups and write X\ for the rate parameter conditional on 

exposure, and A0 for the rate parameter conditional on non-exposure. 
Table 13.1 shows a preliminary tabulation of some data which will be 

analysed in detail in this and the following chapter.* The data relate 

subsequent incidence of ischaemic heart disease (IHD) to dietary energy 

intake. The study cohort consisted of 337 men whose energy intake was 

assessed by a seven-day weighed dietary survey. The subsequent follow-up 

was for an average of 13.7 years and yielded 45 new cases of IHD. The table 

divides this cohort into an exposed group consisting of men whose energy 

intake was less than 2750 kcals per day, the remaining men being regarded 

as unexposed. Although it might seem odd to denote the low energy intake 

group as exposed, this is because low energy intake is a surrogate measure 

for physical inactivity. Table 13.1 also introduces some algebraic notation: 

D0, D\ for the number of disease events observed in the unexposed and 

exposed cohorts respectively, and Y0, Y1 for the corresponding person-years 

observation. 

* Unpublished data. The study is described by Morris, J.N. et al. (1977) British 

Medical Journal, 19 November 1977, 2, 1307-1314. 
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Table 13.1. Incidence of ischaemic heart disease by energy intake 

Energy intake 

< 2750 kcals 

(exposed) 

> 2750 kcals 

(unexposed) 

Person years 1857.5 (Yi) 2768.9 (Yo) 

New cases 28 (D,) 17 (D0) 

Estimated rate 15.1 6.1 

90% interval (11.1 -► 20.6) (4.1 -*• 9.1) 

The data from the unexposed group leads to 

A)log(Ao) - A0To = 171og(A0) - 2 768.9A0 

as the log likelihood for Ao- The most likely value of Ao is the observed 

incidence rate, 17/2768.9 = 6.1 per 1000 person-years. The fact that this 

estimate is based on only 17 observed cases is reflected in the rather wide 

90% confidence interval for Ao stretching from 4.1 to 9.1 per 1000 person- 

years. Similarly, the data from the exposed group leads to 

Di log(Ai) - AiYi = 28 log(Ai) - 1857.5Ai 

as the log likelihood for Ai. The most likely value of Ai is 28/1857.5 = 15.1 

per 1000 person-years, and the 90% confidence interval stretches from 11.1 

to 20.6 per 1000 person-years. The two groups provide independent sets 

of data, so that the two log likelihoods are added to yield the joint log 

likelihood 

171og(A0) - 2768.9A0 + 281og(Ai) - 1857.5Ai. 

This is the likelihood for any specified pair of values for the two parameters 

Ao and Ai. Its maximum value is achieved when these parameters take 

values equal to the corresponding observed rates — 6.1 and 15.1 per 1000 

person-years respectively. 
The 90% confidence intervals for the two rates do not overlap and it 

might seem that the data support the proposition that the two rates are 

different. In general, however, the degree of overlap of confidence intervals 

is a poor criterion for comparing rates. If the interval in the high intake 

group had stretched from, say, 3.0 to 12.0 then it could be argued that, since 

values of the rate parameter in the range from 11.1 to 12.0 are included 

in both intervals, the data do not support the idea that the rates are 

different. The flaw in this argument is that this range is at the extreme 

of both ranges; the support for the proposition that the rates are similar 

requires two rather poorly supported propositions to hold simultaneously. 



124 LIKELIHOODS FOR THE RATE RATIO 
\ 

The way to approach such problems is to reparametrize the model in 

such a way that one of the new parameters makes a comparison. The usual 

comparison parameter for two rates is the rate ratio, which we shall denote 

by the Greek letter 9. Since 9 = Ai/Ao, the rate in the,exposed cohort may 

be written as 9\$ instead of Aj and our model can be written in terms of 

the parameters (0, Ao) instead of (Ai,Ao). 

The log likelihood for Ao and Ai in terms of D0,Di,Yo,Yi is 

Do log(Ao) — AoTo + D\ log(Ai) — AiYi. 

To express the log likelihood in terms of the new parameter system, we 

substitute 9\q for Ai, to get 

Do log(Ao) — Aoko + D\ log(#Ao) — 9\qY\, 

which reduces to 

Dlog(Ao) + Di log(6>) - A0T0 - 6\0YU 

where D = Dq + D\ is the total number of observed disease events. For 

the example in Table 13.1, the log likelihood is 

45 log(A0) + 281og(0) - 2768.9A0 - 1857.5flA0 

The purpose of this choice of new parameters for the model is to concen¬ 

trate the comparison of the rates into the parameter 9, but unfortunately, 

the log likelihood for these new parameters cannot be divided into a sum 

of separate parts, one for each parameter. The appearance of the term 

1857.59Xq means that the shape of the log likelihood with respect to 9 de¬ 

pends on the value of Ao, and this is unknown. When assessing the support 

for different values of 9, not knowing Ao is somewhat of a problem and in 

this context Ao is called a nuisance parameter. 

There are two ways of dealing with a nuisance parameter when con¬ 

structing a likelihood for the parameter of interest. These will be described 
in the next two sections. 

13.2 Profile likelihood 

The obvious way to deal with a nuisance parameter is to estimate its value. 

For each value of the rate ratio 9, the value of Ao which maximizes the like¬ 

lihood can be determined and substituted into the joint log likelihood. The 

resulting maximized log likelihood can then used as a measure of support 

for this value of 9. 

This idea is illustrated in Fig. 13.1. The top graph shows the log like¬ 

lihood ratio for log(Ao) and log(0) as a contour map. The contour lines, 
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corresponding to parameter values which have equal log likelihood, are ap¬ 

proximately elliptical (this has been aided by the choice of log scales for 

both parameters, so that they are not bounded). The contours shown cor¬ 

respond to log likelihood ratios of —1, —2, —3, —4, and —5 relative to the 

maximum value. 

The vertical arrows denote specified values of log(0) for which we require 

to measure the support. For each fixed value of log(0), we find the value 

of log(Ao) which maximizes the log likelihood and plot this maximized log 

likelihood on the lower graph. This is then used to measure the relative 

support lent by the data to different values of log(0). By analogy with 

physical maps, this curve is called a profile log likelihood. A profile log 

likelihood is not a true log likelihood since it cannot be directly obtained by 

taking the log of the probability of the data. However, in most situations 

it behaves in exactly the same way as a log likelihood. It can be seen 

from Fig. 13.1 that the value of 9 which gives the largest value of the 

profile log likelihood is also the value corresponding to the maximum of 

the total log likelihood. The curvature of the profile log likelihood at this 

maximum point can be used to calculate approximate confidence intervals 

and Wald tests, and score tests for null values of 9 can be carried out using 

the gradient and curvature of the profile log likelihood at the null value. 

Similarly, a log likelihood ratio test can be carried out by calculating minus 

twice the profile log likelihood ratio at the null value of 9. 
In the case of the the rate ratio, this process is simplified since the 

derivation of the profile log likelihood can be carried out algebraically, 

leading to a mathematical equation for the curve. The value of Ao which 

maximizes the log likelihood for any given value of 9 may be shown to be 

D 

Y0 + 9Yl 

and substituting this for Aq in the log likelihood expression gives the profile 

log likelihood: 

Di log(9) -D\og(Y0 + 9Yi) + D\og(D) - D. 

Since the last two terms do not depend upon 9, they are irrelevant and 

may be omitted. We are also at liberty to add terms which do not involve 

9, and addition of 

D\ log(Yi) + D0 log (To) 

yields, after some rearrangement, the expression: 

- L>log D i log 
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Fig. 13.1. Log likelihood surface for 0 and A (above) and profile log 

likelihood for 0 (below). 
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This is exactly the same as a Bernoulli likelihood for the odds parameter 

based on a split of D cases as D\ exposed and Dq — D — D\ unexposed. It 

follows that estimation of 6 using the profile log likelihood is equivalent to 

estimating the odds, Cl, in the binary model; the two estimates differ only 

by the known multiplier, Y\/Yq. 

From the Bernoulli likelihood, the most likely value of Cl is D\/D0 and 

the standard deviation of log(fl) is 

It follows that the most likely value of 9 is 

D./Do = Di/Yi 

Yi/Yo Do/Yo 

which is the ratio of the most likely values of the two rates and since 

log(0) differs from log(Q) only by a known constant, the shape of the log 

likelihoods are identical, and the standard deviation of log(6l) is also 

Exercise 13.1. Calculate the maximum likelihood estimate of the rate ratio for 

the data of Table 13.1 and give 90% confidence limits. 

For the calculation of p-values, the null hypothesis generally of interest 

is that the two rates are equal, so that 00 = 1 and Cl® = Y\/Yq. In terms 

of the corresponding risk parameter the null hypothesis is that 

Cl® _ Y\ 

7r® = ~ To + Y\ • 

The score is 
U = Di - Dir0, 

which can be written as 
U = D1-E1 

where Ei = Dir0 is the expected number of exposed cases under the null 

hypothesis. The score variance is 

V = Dir®(1 - tt0). 
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Exercise 13.2. Test the significance of the effect of low energy intake in the 

data of Table 13.1. 

13.3 Conditional likelihood M v 

The approach outlined above starts from the question: what is the proba¬ 

bility that, during follow-up, D0 events occur in the unexposed cohort and 

Di in the exposed cohort? The resulting likelihood involves not only the 

rate ratio 9 (the parameter of interest), but also a nuisance parameter, Ao- 

Replacing the unknown nuisance parameter by its most likely value leads 

to the profile log likelihood for 9. This argument is appealing in that it 

closely follows the way in which cohort studies are designed and executed 

— we decide in advance upon the cohort to be followed and the duration of 

follow-up and wait to see how many disease events occur in different sub¬ 

groups. However, it is not essential that the likelihood argument should 

correspond so closely with the study design. In particular, if some aspect of 

the result contains little or no information about the parameter of interest, 

then we are free to treat it as if it were fixed by the study design. The aim 

of such an argument, which is called a conditional argument, is to obtain 

a new probability model for the data which does not involve the nuisance 

parameter. 

In this case the total number of cases tells us nothing about the effect 

of exposure, which depends on the split among cases between exposed and 

not exposed. We therefore take the total number of events as fixed, corre¬ 

sponding to a study in which the follow-up continues for just long enough 

for D events to be observed. The analysis of the study then concentrates 

on the split of cases between the exposed and unexposed sections of the 

cohort, and starts from the question: given that D failures occurred, what 

is the probability that Do of them occurred in the unexposed group and 

D\ in the exposed group? 

The split of the D failures between exposed and unexposed groups may 

be described using the binary probability model. This is illustrated in 

Fig. 13.2. The left-hand tree shows the observed split of the failures and 

the right-hand tree shows the expected split of cases. If Yj and Yq can be 

regarded as fixed, the odds that a case was exposed is 

D = 
AiFi 

A0Fo 
0Vi 

V 
and the log likelihood for 9 is 

D i log — D log 

Thus regarding the number of cases as fixed leads directly to a conditional 

log likelihood which depends only upon 9. The log likelihood is conditional 
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Fig. 13.2. The conditional argument. 

in the sense that it takes as fixed an aspect of the data (the total number of 

events, D) that was, in reality, an unpredictable outcome of the study. In 

this case the profile and conditional likelihood approaches have led to the 

same log likelihood and, therefore, to identical estimates and confidence 

intervals, but in general this will not be the case. 

The conditional approach always yields a true log likelihood, being 

based upon a probability (albeit a conditional probability) of observed data. 

Also, because this probability depends only on the parameter of interest, it 

can be used to calculate exact p-values and confidence intervals. In our cur¬ 

rent example, the probabilities for different splits of cases between exposed 

and unexposed groups, given 9, can be obtained from the binomial distri¬ 

bution. However, the conditional approach is not an automatic method, 

but relies on our ingenuity in recognizing a suitable conditional argument. 

Such arguments are not always possible. For example, it has not proved 

possible to find an argument which leads to a conditional likelihood for the 

rate difference, Ai — Ao- 
In contrast, the profile method has the considerable virtue that it can 

always be employed. Even if it is impossible to use an algebraic method to 

obtain an explicit formula for the profile log likelihood curve, the deriva¬ 

tion of the curve numerically by the procedure illustrated in Fig. 13.1 can 

always be carried out by computer. The difficulty with this approach is 

that the profile curve is not necessarily a true log likelihood. However, 

in most situations it does approximately possess the properties of a true 

log likelihood. These properties can safely be assumed when the number 

of nuisance parameters is small in comparison with the total quantity of 

data. 
We should note that our current use the conditional approach requires 

A0Yo and AiYi, the expected numbers of cases in the two groups, to be 

constants not influenced by the study outcome. Although this is approx¬ 

imately true for the rare events usually studied by epidemiologists (see 

section 6.3), it may not be an acceptable argument when the probabilities 

of failure are high. In these cases, the likelihood derived in this chapter 
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can only be regarded as a profile likelihood and exact tests and confidence 

intervals are not available. 

[*~j 13.4 Approximating profile log likelihoods .,v 

For the rate ratio it is possible to derive a mathematical expression for 

the profile log likelihood and hence find a Gaussian approximation from 

which approximate p-values and confidence intervals can be calculated in 

the usual way. This is not possible in general. The profile likelihood can 

always be computed by going through the steps indicated in Fig. 13.1, but 

the resulting curve usually cannot be represented by a simple algebraic 

expression. Fortunately some simple rules, derived from calculus, allow us 

to calculate Gaussian approximations to such profile log likelihoods, and 

hence algebraic expressions for M, S, U, and V, which we can go on to 

use in the usual way. These rules and their derivation are explained in 

Appendix C. Here we briefly summarize the most important rules. 

An important general problem is the estimation of the difference be¬ 

tween two parameters Po and Pi when these are estimated from two in¬ 

dependent bodies of data. If the log likelihood for Po has a Gaussian 

approximation defined by the most likely value Mq and standard deviation 

So and the approximation to the log likelihood for pi is defined by M\ and 

Si, then the Gaussian approximation of the log likelihood for Pi — Pq has 

M — Mi — M0, 

5 = vt^T(SoF. 

The rate ratio is a special case of this more general problem since its loga¬ 
rithm may be written 

log = log(Ai) - log(Ao) 

and in Appendix C it is shown that these rules lead to the same Gaussian 

log likelihood approximation as we obtained earlier. Here we use them to 

approximate the profile log likelihood for the rate difference. The most 

likely value is the difference between the most likely values of the rates, 

M = D l _ A 

Yi To’ 

and, from Chapter 9, Si = y/Dl/Yi and So = VDq/Yq so the value of S 
for the rate difference is 

Do 

(W 



SOLUTIONS 131 

Exercise 13.3. Calculate an approximate 90% confidence interval for the dif¬ 

ference between the rates using the data of Table 13.1. 

A still more general problem concerns a weighted sum of parameters, 
of the form 

W\(3\ + 44 202 + IA3/33 + • • • , 

each P parameter again being estimated from independent bodies of data. 

The Gaussian approximation to the profile log likelihood for the weighted 

sum has 

M — W\M\ T 14 2M2 T T3 A/3 T • • • 

5 = x/^iSr)2 + {W2S2)2 + (w3s3)2 + ■■■ 

where Mi, Si,... etc. are the most likely values and standard deviations 

for etc.. An example is the profile log likelihood for the cumulative 

failure rate. In Chapter 5 we defined the cumulative rate by 

A1!11 + A2T2 -I- 

where A1, A2,... are probability rates operating for time periods T1, T2, — 
The cumulative rate is, therefore, a weighted sum of the form discussed in 

this section. 

Exercise 13.4. Using the Gaussian approximation given in Chapter 9 for the 

log likelihoods for rate parameters, derive an expression for the Gaussian approx¬ 

imation to the profile log likelihood for the cumulative rate. 

Solutions to the exercises 

13.1 The most likely value of 9 is 

D1/Y1 = 28/1857.5 = 4g 

Do/To 17/2768.9 

The standard deviation of the estimate of log(0), is 

S = -y/1/28 + 1/17 = 0.3075, 

so that the 90% error factor for 9 is 

exp(1.645 x 0.3075) = 1.66. 

The 90% confidence limits for the rate ratio are 2.48/1.66 = 1.49 (lower 

limit) and 2.48 x 1.66 = 4.12 (upper limit). 
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13.2 The observed number of events in the low energy intake group is 28. 

There were 45 events in total and, under the null hypothesis, the probability 

of having been exposed is tt0 = 1857.5/4626.4 = 0.402. The score is 

■Vv, 

U = 28 - 45 x 0.402 = 9.93, 

and the score variance is 

V = 45 x 0.402 x (1 - 0.402) = 10.81. 

The score test is (U)2/V = 9.12, giving p « 0.003. 

13.3 

M = 
28 17 

1857.5 2768.9 

S = 
28 

+ 
17 

(1857.5)2 (2768.9)2 

The 90% confidence interval is 

0.00893 (8.93 per 1000 person-years). 

— 0.00321 (3.21 per 1000 person-years). 

M ± 1.645S1 — 3.65 to 14.2 per 1000 person-years. 

13.4 The log likelihood for A1 is approximated by a Gaussian curve with 

Ml 
Dl 

yi* 
5X = 

Y1 ‘ 

Similarly for A2, A3,... etc. The weights are the durations of observation, 

T ,T ,..., so that the profile log likelihood for the cumulative rate has its 
maximum at 

nl n2 
M = Y-T1 + —T2 + ■■■ 

Y i Y2 ^ 

and the standard deviation of the Gaussian approximation is 

Note that, as we narrow the time bands to clicks, the ratio T/Y approaches 

1/N, where N is the number of subjects under observation during the click. 

In these circumstances, M is the Aalen-Nelson estimate of the cumulative 

rate and S may be used to calculate an approximate confidence interval. 



14 
Confounding and standardization 

14.1 Confounding 

Epidemiological studies generally involve comparing the outcome over a 

period of time for groups of subjects experiencing different levels of expo¬ 

sure. Such studies are usually not controlled experiments but ‘experiments 

of nature’ of which the epidemiologist is a passive observer. In such in¬ 

vestigations, there is always the possibility that an important influence on 

the outcome, which would have been fixed in a controlled experiment, dif¬ 

fers systematically between the comparison groups. It is then possible that 

part of an apparent effect of exposure is due to these differences, and the 

comparison of the exposure groups is said to be confounded. Statistical ap¬ 

proaches to dealing with the problem of confounding aim to correct, during 

analysis, for such deficiencies in the design of experiments of nature. 

A particularly important potential confounding variable (or confounder 

in many epidemiological studies is the age of subjects. We shall consider 

an example in which subjects in a follow-up study are classified according 

to whether their age at the start of follow-up was less than 55 years or 55 

years or more. Suppose that the breakdown between the two age groups is 

0.8 : 0.2 and that the conditional probability of failure is 0.1 in the first age 

group and 0.3 in the second. When age is ignored the overall or marginal 

probability of failure is 

(0.8 x 0.1) + (0.2 x 0.3) = 0.14. 

Now suppose that the age distribution differs between the two exposure 

groups, being 0.8 : 0.2 in the not exposed group but 0.4 : 0.6 in the exposed 

group (see Fig. 14.1). The marginal probability of failure for the unexposed 

group is still 
(0.8 x 0.1)+ (0.2 x 0.3) =0.14, 

but for the exposed group it is now 

(0.4 x 0.1) + (0.6 x 0.3) = 0.22. 

The marginal probabilities of failure now suggest an apparent effect of 
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Unexposed subjects Exposed subjects 

Fig. 14.1. Confounding by age. 

exposure, but this is entirely due to the difference in age distributions 

between the exposed and unexposed subjects. 

In this example the apparent effect of exposure is entirely due to age 

differences but confounding may also be partial, acting either to exaggerate 

or to dilute a real relationship. As an example of this, suppose the effect of 

exposure is to raise the probability of failure from 0.1 to 0.2 in the younger 

age group and from 0.3 to 0.5 for older subjects. When the age distribution 

is 0.8 : 0.2 in both exposure groups the overall effect of exposure is to 

increase the marginal probability of failure from 

(0.8 x 0.1) + (0.2 x 0.3) = 0.14 

in the unexposed group to 

(0.8 x 0.2) + (0.2 x 0.5) = 0.26 

in the exposed group. When the age distribution is 0.8 : 0.2 in the unex¬ 

posed group and 0.4 : 0.6 in the exposed group the overall effect of exposure 

is to increase the marginal failure probability of failure from 

(0.8 x 0.1) + (0.2 x 0.3) = 0.14 

in the unexposed group to 

(0.4 x 0.2) + (0.6 x 0.5) = 0.38 

in the exposed group. Thus the overall effect of exposure appears greater 
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when the age distributions differ than when they are the same. 

These examples demonstrate that a third variable, such as age, can dis¬ 

tort the relationship between an exposure and failure provided it is related 

to both exposure and failure. This dual relationship is often taken as the 

definition of a confounder. However, although it is a necessary condition 

for a variable to be a confounder, it is not sufficient: a confounder must 

also be a variable which would have been held constant in a controlled ex¬ 

periment. For example, in perinatal epidemiology, we might ask whether 

birthweight could be regarded as confounding the relationship between the 

receipt of proper antenatal care and the risk of perinatal death. Although 

birthweight is related to both antenatal care and perinatal risk, it cannot 

be regarded as a confounder since one of the results of successful antenatal 

care should be adequate birthweights. Since it would not make sense to 

envisage an experiment in which we varied the provision of antenatal care 

while maintaining the distribution of birthweight constant, differences in 

birthweight distribution cannot be regarded as a deficiency in the design 

of the experiment of nature. It is not, therefore, a confounder. - 

14.2 Correction for confounding 

The linking of confounding to an imaginary experiment helps to clarify the 

ideas which lie behind statistical methods for dealing with the problem. 

There are two rather different approaches, and these closely mimic the 

ways in which extraneous influences are dealt with in experimental science. 

The classical approach to experimentation is to hold constant all influ¬ 

ences other than the experimental variable(s) of interest. For example, to 

avoid confounding by age, we would simply compare failure risks in exposed 

and unexposed subjects of a fixed age or, at least, falling within a narrow 

range of ages. The statistical comparison would then be of failure prob¬ 

abilities conditional upon age. The same comparison can be made in an 

non-experimental study by the analytical strategy called stratification. By 

dividing (or stratifying) the data according to age, the single experiment of 

nature in which age has not been adequately controlled is transformed into 

a series of smaller experiments within which age is closely controlled. The 

analysis then compares probabilities of failure between exposure groups 

within age bands. However, a consequence of this strategy is that individ¬ 

ual strata may contain too little data to be informative on their own. The 

more finely we stratify the data, the more closely we control for confound¬ 

ing, but the sparser our data becomes within strata. This impasse may 

only be broken by making the further assumption that the comparisons 

estimate the same quantity within each stratum, and then combining the 

information from the separate strata. We shall defer further discussion of 

this approach to Chapter 15. 
Holding extraneous variables constant is not the only model for good ex- 
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perimentation, although it is certainly the most familiar. In the twentieth 

century, experimentation has become a valuable tool in fields of study such 

as biology, in which such close control of experimental material and con¬ 

ditions is not possible. The idea of randomization has been central to this 

development; if we cannot ensure that experimental groups are identical in 

all important respects, then by assigning subjects to groups at random, we 

ensure that the probability distributions for extraneous variables do not 

differ between exposure groups. Comparisons between the groups can then 

be safely made. 

Returning to the comparison of failure probabilities between exposure 

groups, it is rarely possible, in epidemiology, to use randomization to ensure 

that extraneous variables have equal distributions in the different exposure 

groups. However, it is possible to take account of differences in the dis¬ 

tribution of a specific variable, such as age, by predicting the outcome for 

exposure groups which have the same age distribution. This is done by 

first estimating the age-specific probabilities of failure for each exposure 

group, and then using these to predict the marginal probabilities of failure 

for exposure groups which have a standard age distribution. This forms 

the basis of the second statistical approach to dealing with confounding, 

known in epidemiology as direct standardization. 

14.3 Standardized rates 

The remainder of this chapter concerns the use of direct standardization 

to compare rates. Since rates are probabilities per unit time they can be 

compared in the same way as failure probabilities. Age-specific failure rates 

are estimated for each of the groups being compared, and these are used 

to predict the marginal rates which would have been observed if the age 

distributions in the comparison groups had been the same as the standard 

age distribution. These estimates are called standardized rates. 

The choice of the age distribution to use for standardization depends 

on the purpose of the analysis. It is quite common for the overall distribu¬ 

tion of age, added over exposure groups, to be used as the standard, thus 

simulating the results of an experiment in which the total study group was 

randomly allocated between exposure categories. However, if one of our 

aims is to facilitate comparisons with other published studies, it is more 

useful to use an age distribution which is in general use. Several distribu¬ 

tions are commonly used for this purpose. One is the age distribution of 

the world population, another is the age distribution for developed coun¬ 

tries. Since there is no ‘correct’ standard there is much to be said in favour 

of using a uniform age distribution where the percentage falling in each 

age group is the same. One advantage of using a uniform age distribution 

is that the standardized rate is then directly proportional to the cumula¬ 

tive rate for a subject experiencing the age-specific rates from the study 
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Table 14.1. IHD incidence rates per 1000 person-years 

Exposed 

(< 2750 kcal) 

Unexposed 

(> 2750 kcal) 

Age Cases P-yrs Rate Cases P-yrs Rate 

40-49 2 311.9 6.41 4 607.9 6.58 

50-59 12 878.1 13.67 5 1272.1 3.93 

60-69 14 667.5 20.97 8 888.9 9.00 

Total 28 1857.5 15.07 17 2768.9 6.14 

throughout life. 
Direct standardization is most commonly used when comparing quite 

large groups, such as the populations of different countries or regions. When 

used with less extensive data it will yield statistically unreliable estimates 

if some of the age-specific rates, although based on very few cases, receive 

appreciable weight in the analysis. 
To illustrate the technique of direct standardization we shall return to 

study of ischaemic heart disease and energy intake, discussed in Chapter 13. 

The incidence of ischaemic heart disease in the exposed group (low energy- 

intake) is 15.1 per 1000 person-years while the rate in the unexposed group 

is 6.1 per 1000 person-years. These rates, which take no account of any 

possible confounding effect of age, are often referred to as crude rates to 

distinguish them from standardized rates. 
Table 14.1 shows the data stratified by 10-year age bands. The age 

distribution is different in the two exposure groups; this may be seen by 

converting the person-years to a proportion of the total person-years in each 

group giving 0.168, 0.472, and 0.359 in the three age bands for the exposed 

(low energy-intake) group and 0.210, 0.459, and 0.321 for the unexposed 

(high energy-intake) group. These age differences might explain some of 

the difference in the crude IHD incidence rates. 
Using the uniform age distribution as standard, our estimate of the 

marginal rate for a group of exposed subjects with a uniform age distribu¬ 

tion is 

(0.333 x 6.41) + (0.333 x 13.67) + (0.333 x 20.97) = 13.67 

per 1000 person years and, for a group of unexposed subjects with a uniform 

age distribution, it is 

(0.333 x 6.58) + (0.333 x 3.93) + (0.333 x 9.00) = 6.50 

per 1000 person-years. The standardized rates for the two groups are there¬ 
fore 13.7 and 6.5 per 1000 person-years. These do not differ greatly from 
the crude rates of 15.1 and 6.1 per 1000 person-years, showing that the 
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confounding effect of age is small in this case. 

Exercise 14.1. Find the standardized rates for the exposed and not exposed 

groups using as standard the age distribution with probabilities of 0.2, 0.5, and 

0.3 in the three age bands. '* * 

14.4 Approximating the log likelihood 

When there are three age bands, as in the IHD and energy example, the 
standardized rate parameter takes the form of a weighted sum of the age- 
specific rate parameters, 

W^A1 + W2A2 + W3A3, 

where 
A1, A2, A3 

are the rate parameters for the age bands and 

W\W2,W3 

are the probabilities of the standard age distribution. Since A1, A2 and 
A3 have independent log likelihoods, we can use the ideas introduced in 
section 13.4 and Appendix C to derive a Gaussian approximation to the 
profile log likelihood for the standardized rate. The most likely value is 

WlM1 + W2M2 + W3M3 

where M1 = D1 /Yl is the most likely value of the age-specific rate pa¬ 
rameter in band 1, and similarly expressions hold for bands 2 and 3. The 
standard deviation of the Gaussian approximation is 

^{W'S1)2 + {W2S2)2 + (W3S3)2 

where S1 = VD1 /Yl is the standard deviation of the Gaussian approxima¬ 
tion to the log likelihood for A1, again with similar expressions for bands 2 
and 3. 

For the IHD and energy example the proability weights are 

W1 = W2 = W3 = 0.333. 

The age-specific rate for the first age band of the exposed group is 6.41 and 
the corresponding standard deviation is 

V^/311.9 = 0.00453, 

or 4.53 per 1000 person-years. The most likely values for the rates in the 
other two age bands are 13.67 and 20.97 with standard deviations 3.94 and 
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5.61 per 1000 person-years. The standard deviation of the standardized 

rate is therefore 

\f (0.333 x 4.53)2 + (0.333 x 3.94)2 + (0.333 x 5.61)2 = 2.74 

per 1000 person-years. 

Exercise 14.2. Show that the standard deviation of the standardized rate for 

the unexposed group is 1.63 per 1000 person-years. 

LOG TRANSFORMATION OF STANDARDIZED RATES 

Just as for any other rate, Gaussian approximations to the log likelihood are 

more accurate when related to the log of the standardized rate. The most 

likely value on the log scale is, of course, just the log of the standardized 
rate, and the corresponding standard deviation can be calculated by using 

the rule described in Chapter 9. There we saw that the standard deviation 

of the Gaussian approximation to the likelihood for log(A) is obtained from 

the standard deviation of the Gaussian approximation to the likelihood for 

A by multiplying by 1/M, where M is most likely value of A. It follows 

that for the example of energy intake and IHD incidence, the standard 

deviations of the standardized rates on a log scale are 2.74/13.67 = 0.200 

and 1.63/6.50 = 0.251. 
A simple extension of the same ideas allows us to calculate estimates 

and confidence intervals for the ratio of two standardized rates. The log 

of this ratio is equal to the difference between the logarithms of the two 

standardized rates, and from section 13.4 and Appendix C the standard 

deviation of the log of the ratio of the standardized rates is 

y/ (0.200)2 + (0.251)2 = 0.321. 

This can be used to obtain a confidence interval for the ratio of the stan¬ 

dardized rates by using the error factor 

exp(1.645 x 0.321) = 1.696. 

Exercise 14.3. Use this error factor to find an approximate 90% confidence 

interval for the ratio of the two standardized rate parameters. 
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Solutions to the exercises 

14.1 The estimated standardized rates are 

(0.2 x 6.41) + (0.5 x 13.67) + (0.3 x 20.97)v= 14.41 

for the exposed group, and 

(0.2 x 6.58) + (0.5 x 3.93) + (0.3 x 9.00) = 5.98 

for the unexposed group. 

14.2 The standard deviations of the age-specific rates are 3.29, 1.76, and 

3.18 respectively. The standard deviation of the standardized rate is 

\J(0.333 x 3.29)2 + (0.333 x 1.76)2 + (0.333 x 3.18)2 = 1.63. 

14.3 The ratio of standardized rates is 13.67/6.50 = 2.10 and the 90% 

range for this is from 2.10/1.696 = 1.24 to 2.10 x 1.696 = 3.56 . 



15 
Comparison of rates within strata 

15.1 The proportional hazards model 

Direct standardization is a very simple way of correcting for confounding 

but it does have some limitations. This chapter deals with the alterna¬ 

tive and more generally useful approach of stratification. We shall again 

illustrate our argument using the study of the relationship between en¬ 

ergy intake and IHD first introduced in Chapter 13 and further analysed 

in Chapter 14. There, in Table 14.1, we showed the data stratified by 

10-year age bands and demonstrated that the low energy intake group is, 

on average, rather older. This might explain some, or all, of the increase 

in IHD incidence rate. The method of direct standardization predicts the 

marginal rates for energy intake groups with the same standard age dis¬ 

tribution. This chapter explores the alternative approach which compares 

age-specific rates within strata. Table 15.1 extends Table 14.1 by calculat¬ 

ing rate ratios within each age band. This demonstrates the main prob¬ 

lem with this approach to confounding; holding age constant and making 

comparisons within age strata leads to variable and unreliable estimates, 

because the age-specific rates are based on so few data. 
This problem is resolved is by combining the age-specific comparisons 

from the separate strata, but any such procedure carries with it a further 

modelling assumption, because combining the age-specific comparisons can 

only be legitimate if we believe that they all estimate the same underlying 

quantity. If we are prepared to believe that the rate ratio between exposure 

Table 15.1. Rate ratios within age strata 

Age 

Exposed 

(< 2750 kcal) 

Unexposed 

(> 2750 kcal) Rate 

ratio D Y Rate D Y Rate 

40-49 2 311.9 6.41 4 607.9 6.58 0.97 

50-59 12 878.1 13.67 5 1272.1 3.93 3.48 

60-69 14 667.5 20.97 8 888.9 9.00 2.33 

Total 28 1857.5 15.07 17 2768.9 6.14 2.45 
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groups is constant across age-bands, the evidence from the three bands can 

be brought together to provide a single estimate of the (constant) age- 

specific rate ratio. Of course the model on which the estimate is based, like 

all models, is open to question and in later chapters we shall discuss ways 

in which we can test whether it holds. For the present, we shall be content 

to believe that the model holds in our example, and that the fluctuation 

of age-specific rate ratios in Table 15.1 is no more than we would expect 

given the small numbers of cases in each age band. 

Our notation follows naturally from earlier chapters. The age bands are 

indexed by the superscript t and exposure groups are indexed by subscripts, 

so that Aq and A* are the rate parameters in age band t for the unexposed 

and exposed subjects respectively. We shall write the rate ratio parameter 

as 9, so that,the model of constant rate ratio may be written 

This is called the proportional hazards model. The parameter 9 is called 

the rate ratio for exposure controlled for age, sometimes abbreviated to the 

effect of exposure controlled for age. In this chapter we discuss how 9 can 
be estimated. 

15.2 The likelihood for 9 

When the rate ratio is constant across age bands, we can replace the rate 

parameters Aj by 9\q. In our example, this reparametrization replaces the 

original six rate parameters, which we assume to be constrained to obey the 

proportional hazards model, with four parameters which are free to take 

any positive value. One parameter, namely the rate ratio 9, is our prime 

interest, and the remaining three are regarded as nuisance parameters. 

Since each age band serves as an independent study, it is a simple 

matter to write down the log likelihood for a stratified comparison. Con¬ 

structing the log likelihood using the prospective argument, each age band 

contributes a term which depends upon 9 and the appropriate Aq. The 

total likelihood is obtained by adding these terms over age bands. For 

comparing rates between exposed and unexposed subjects, the parameters 

Aq are nuisance parameters. As in Chapter 13, replacing these by their 

most likely value for given 9 leads to a profile log likelihood for 9. With the 

caveat expressed at the end of section 13.3, this log likelihood can also be 

justified as a conditional likelihood based on the split of cases within each 
stratum. 

The log likelihood ratio curve for log($) in our illustrative example is 

shown in Figure 15.1. Using a computer, it is a simple matter to find 

the most likely value, M, and to use the curvature of the log likelihood 

ratio to compute a Gaussian approximation. In this case M = 0.8697 
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Fig. 15.1. Log likelihood ratio for the common rate ratio. 

and S — 0.3080, and this approximation is shown as a broken line in the 

figure. The most likely value of the rate ratio is exp(0.8697) = 2.386 and 

confidence intervals can be calculated using the error factor: 

exp( 1.645 x 0.3080) = 1.660. 

The fact that the high energy-intake group is, on average, slightly younger 

than the low energy-intake group is the reason why the estimate of the rate 

ratio controlled for age is slightly smaller than the crude rate ratio (2.45). 

However, the difference is extremely small. This is not unusual; rather large 

differences between exposure groups in important variables are necessary 

for the effect of confounding to be appreciable. 
Unfortunately it is not possible to calculate the values of M and S by 

hand using simple formulae. The computer programs which are used to 

carry out such computations are very flexible and allow more complicated 

models to be fitted. Accordingly discussion of these will be postponed 

until Part II and the remainder of this chapter will deal with methods 

which require only a hand calculator. 

15.3 A nearly most likely value for 9 

We saw in Chapter 13 that, in an unstratified analysis, both profile and 

conditional arguments led to the Bernoulli likelihood 

Di log(ft) - Dlog(l + ft), 
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where f), the odds for a case having been exposed, is 9Y\/Yq. The gradient 
of the curve of log likelihood versus log($) is 

D\ — D 
n 

l + O 

which, after substituting 9Y\/Yq for 0 and rearranging becomes 

1 

Yo + OYi 
(D.Yo - OD0Y1) W (DiY0 — ODqYi) , 

where W = 1 /(Y0 + 0Y{). In a stratified analysis, the log likelihood is the 
sum of contributions of each stratum, 

[-D5 log(n') - £>' iog(i + rif)] 

and the gradient is similarly constructed by adding up gradient contribu¬ 
tions: 

YW‘ (D‘lYo - 0D‘Y‘), 

where = 1 /(Yq + 6Y*) are stratum weights. 
The most likely value of 9 occurs where the gradient is zero, that is, at 

X) WtDt0Y{ ' 

Since calculation of the weights Wt involves 9, and this equation cannot 

be used directly to find the most likely value. However, it can be used 
iteratively as follows: 

1. guess a value for 9, and use this to calculate initial weights; 

2. using these, calculate a first estimate of 9; 

3. using this new estimate, calculate more accurate weights. 

The sequence of calculations may be repeated until there is no change in 

the estimate. Computer programs for maximum likelihood estimation use 
similar iterative methods of computation. 

In practice, the estimate obtained is not very sensitive to changes in 

the values of the weights — rather large changes make only a relatively 

small difference to the estimate. Additionally, it may be argued that it 

is only really important to achieve the closest approximation to the log 

likelihood when estimating rate ratios which are fairly close to 1. These 

considerations suggest using the weights corresponding to the choice 6 = 1, 
and to go no further with the calculations. These weights are the reciprocal 
of the person-years observations in each age band: 

H+ = 
1 1 

To4 + Y* ~ y** 
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Use of these weights leads to the Mantel-Haenszel estimate of the rate 

ratio*, 

spj yj/Y1 

Zdiy'/y'- 

In this expression, each age band makes contributions of 

Ql = 
D\Yl 

Yt ’ 
B1 

Y< 

to the top (numerator) and bottom (denominator) of the estimate respec¬ 
tively. The estimate of the rate ratio for age band t is Ql/Rt and the 
combined estimate of the constant rate ratio is Q/R, where Q = ^ Ql and 

R = J2Rt. 

Exercise 15.1. Calculate Ql and for each of the three age bands in Table 15.1, 

and hence calculate the Mantel-Haenszel estimate of the rate ratio. Compare this 

with the most likely value. 

15.4 Calculating p-values and confidence intervals 

Approximate p-values are most easily calculated using the score test. Since 

the log likelihood for 6 for the age-stratified comparison is the sum of 

contributions from each age band, it follows that its gradient, and hence 

the score, is the sum of scores for each stratum. Similarly, the curvature 

is the sum of the curvatures of the separate contribution of each stratum 

so that the overall score variance is the sum of score variances for each 

stratum. That is, 

u = v = Yv‘- 

Thus to carry out the test we first calculate scores and score variances 

for each stratum separately and then sum these over strata to obtain the 

total score and score variance. We then compare (U)2/V with the chi- 

squared distribution in the usual way. The contribution of stratum t to 

the score and score variance are of the same form as given at the end of 

section 13.2, namely 

17* = D{ - Vt = Dtnt&( 1-tt*,), 

where itf0 = Y-f/Y1, the ratio of exposed to total person years. 

Exercise 15.2. For our example, what is the p-value for the null hypothesis 

that, after controlling for age, the rate ratio is 1. 

*In fact Mantel and Haenszel did not propose this method but an extremely similar 

one for case-control studies. We shall discuss this in Chapter 18. 
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As before, the value of U may be interpreted as the difference between the 

number of cases who had been exposed and the number expected under 

the null hypothesis, taking into account the age structures of exposed and 
unexposed groups. 

The calculation of the score variance, V, also allows us to calculate an 

approximate confidence interval around the Mantel-Haenszel estimate. A 

Gaussian approximation on the log(0) scale, with 

can be used to calculate an error factor and the approximate confidence 
interval in the usual wayd 

Exercise 15.3. Calculate the standard deviation, S, of the log Mantel-Haenzsel 

estimate for the energy intake data. Use this to calculate a 90% confidence 

interval for the rate ratio adjusted for age. 

These results are very close to those obtained using a computer program to 

find the Gaussian approximation to the log likelihood curve. The computer 

method is better in the sense that, as the quantity of data increases, the 

approximate interval of support approachs the correct likelihood-based in¬ 

terval, while the Mantel-Haenszel interval remains slightly wider no matter 

how much data we collect. The discrepancy is rarely important. 

15.5 The log-rank test 

Our example in this chapter has involved stratification by a time scale, 

age, into three rather broad bands. In clinical follow-up studies time is 

measured from diagnosis or start of treatment and the incidence of events 

may vary rapidly, requiring the choice of narrow bands. This, together with 

the fact that choice of bands may introduce an arbitrary element into the 

analysis, has led to the popularity of a version of the test in which time 

is stratified infinitely finely into clicks, with no click containing any more 

than one event. This test is called the log ranic* or Mantel-Cox test. 

Derivation of this test from that of the previous section is straightfor¬ 

ward. The first thing to notice is that clicks which contain no event (i.e. 

with Dt = 0) make no contribution either to the score, U, or the score vari¬ 

ance, V. We therefore need only consider those clicks in which we observe 

the occurrence of an event in one of the groups (Dt = 1). These are are 

tThis approximation is not widely known, but it would not appropriate to justify it 
here. It suffices to say that it is adequate for all our purposes. 

"This nomenclature may seem rather obscure, since the calculation of the test requires 
neither logarithms or ranks! It arises from an alternative derivation. 
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Table 15.2. Survival times in two groups of patients 

Group Time (days) 

Test treatment 

(N = 20) 

86,99*,119*,123*,139*,161*, 185*, 212*, 231, 253*, 

262*, 281*, 303*, 355*, 360*, 380*,392,467*,499*,514* 

Control 

(N = 20) 

73,91,102*,120*,135,160*,194,202*,209*, 220*, 

252, 270*, 296,330*, 347*, 375*, 390*, 414,475*, 485* 

known as informative time points.§ Since each click is very short, we need 

not consider variation in the time spent by different subjects in the band, 

and the null probability that a failure was exposed becomes 

t N{ Number of exposed subjects in study at time t 

~ Nl ~ Total number of subjects in study at time t 

Each failure makes a contribution to the score of the difference between the 

observed number of events in the exposed group, which is either 0 or 1, and 

the expected number, which is simply The score variance is obtained 

by adding the contributions 

V* = 74(i-74). 

Exercise 15.4. Table 15.2 shows times between entry to a clinical trial and 

relapse for patients receiving two methods of therapy. (The data are only illus¬ 

trative — a real trial with so much censoring would need to be much larger than 

this!) The times marked with an asterisk represent times at which observation 

ceased without occurrence of relapse. Construct a table showing the times of 

occurrence of relapses, the number of patients in each group under study at each 

of these times, and the corresponding observed and expected relapses in the test 

group. Use this table to carry out the score test. 

15.6 Comparison with reference rates: the SMR 

An important special case concerns the comparison of age-specific rates in 

a study cohort, A4, with those in a reference population, which we shall 

denote by A*R. We have discussed this informally in Chapter 6. A more 

formal treatment follows as a simple case of the methods discussed above. 

The proportional hazards model holds that the ratio of age-specific rates 

in the study cohort to the reference rates is constant across age bands, 

§ Since clicks have no duration, we assume that no more than one event occurs at any 

time point. 
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If we observe Df failures in Yl person years of observation in each age band 
of the cohort, the log likelihood contribution is 

Dt log(A4) - 

and making the substitution A* = (9A^ this becomes 

log(0) + D* log(A^) - OX^Y*. 

Since the reference rates A^ are calculated from very large populations, they 

are effectively known constants, and the above log likelihood depends only 

on one unknown parameter, 9. The second term in the log likelihood does 

not depend on 9 and can be ignored, and the third term may be simplified 

after noting that A^Y1 is the expected number of failures obtained by 

multiplying the age-specific reference rate by the corresponding person- 

years of observation of the study cohort (see Chapter 6). Denoting this by 

Et, the log likelihood contribution of one age band becomes 

Dt log(0) - 9Et 

and summation over age bands leads to the total log likelihood 

D\og(9) — 9E, 

where D, E are the total observed and expected numbers of failures. This 

is a Poisson log likelihood, but the rate ratio parameter 9 replaces the rate 

parameter A, and the expected number of failures E replaces the person- 

years Y. Thus estimating 9 in this case is just the same as estimating 

a rate. The most likely value is the ratio of observed to expected cases, 

D/E, and in epidemiology this is called the standardized mortality ratio, 

or SMR. A 90% confidence interval can be calculated using the error factor 

exp 

An approximate p-value for the null hypothesis 9 = 1 can be carried out 
using the score and score variance 

U = D-E, V = E. 

Comparison of rates with reference rates in this way is known in epidemi¬ 
ology as indirect standardization. 

Exercise 15.5. In the follow-up study of ankylosing spondilitis patients dis¬ 

cussed in Chapter 6, the observed number of deaths from leukaemia was 31 while 
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the expected number calculated from reference rates was 6.47. Calculate the 90% 
confidence interval for the common ratio of cohort age-specific rates to ref^ence 
rates. Also calculate an approximate p-value for the null hypothesis 9 — 1. 

Exercise 15.6. The calculation of the expected number of deaths in the anky¬ 
losing spondilitis study was based on person-years classified by both age and 
calendar period (see Chapter 6). What further modelling assumption is formally 
necessary to justify the analysis carried out in the previous exercise? 

15.7 Comparing standardized rates 

We showed in Chapter 14 that standardized rates estimate the marginal 

rates when the age distributions are corrected to a common standard. 

These are weighted sums of age-specific rates. In the case of three age 

bands, the marginal rate is 

W'X1 + W2A2 + W3A3 

where (W1, W2, W3) are the relative frequencies of the three age bands in 

the standard distribution, and the ratio of two marginal rates, corrected to 

the same age distribution, is 

W1X\ + W2\j + w3a3 

w2a2 + w3a3' 

When the proportional hazards model holds, every term in the numerator 

of this expression is 9 times the corresponding term in the denominator, and 

it follows that the ratio of marginal rates will also be 9 — the relationship 

between marginal rates is the same as that between the conditional (age- 

specific) rates. Thus, the ratio of standardized rates can be used as an 

estimate of 9. However it may not be a very good estimate if the standard 

age distribution gives high weight to age bands with few failures. 
Note that the equivalence demonstrated above between the conditional 

and marginal comparisons does not hold for all stratification models. For 

example, if the ratio of the age-specific odds of failure for exposed and 

unexposed subjects is a constant, 9, for all ages then the ratio of marginal 

odds is not equal to 9, even when there is no confounding and the age 

distributions are identical. Thus we cannot always rely on the method of 

direct standardization if we are interested in comparisons within strata. In 

Chapter 18 we shall encounter an important example of this. 

15.8 Comparison of SMRs 

Although the ratio of standardized rates can be used as an alternative 

estimate of 9, there has been some controversy as to whether the ratio of 

two SMRs can also be used in this way. 
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An understanding of the formal model which lies behind indirect stan¬ 

dardization clarifies this argument. Calculation of an SMR for an exposed 

cohort, using reference rates A^ implies the model 

= Mr, ^ 

where 9\ is the constant ratio of rates in this cohort to reference rates. 

Similarly, calculation of an SMR for an unexposed cohort implies the model 

A* = OoXl 

A direct consequence of these two models is that the ratio of rates for 

the two cohorts is also constant across age. This can be demonstrated by 
simply dividing the two equations, when A^ cancels leaving 

Thus if the age-specific rates for both exposed and unexposed cohorts are 

proportional to the reference rates, the comparison of SMRs is legitimate. 

Since the likelihoods for 9i and 9q are Poisson in form, with expected 

numbers of failures E\ and E0 replacing person-years observation Y\ and 

Y0, the likelihood for their ratio, 9, is the same as for the rate ratio in 
Chapter 13. 

This method, however, relies on the assumption that both sets of age- 

specific rates are proportional to the reference rates. If they are propor¬ 

tional to each other, but not to the reference rates, then the ratio of SMRs 

will not correctly estimate the rate ratio 6. Because of this additional as¬ 

sumption concerning reference rates, estimation of 9 by the ratio of SMRs 
is not usually to be recommended. 

Solutions to the exercises 

15.1 The calculations are as follows: 

Age Ql Rt 
40-49 2 x 607.9/919.8 = 1.32 4 x 311.9/919.8 = 1.36 
50-59 12 x 1272.1/2150.2 = 7.10 5 x 878.1/2150.2 = 2.04 
60-69 14 x 888.9/1556.4 = 8.00 8 x 667.5/1556.4 = 3.43 
Total 16.42 6.83 

The Mantel-Haenszel estimate is 16.42/6.83 = 2.40 while the most likely 
value is 2.39. 

15.2 The score is: 

U 2-6 
311.9A 

919.8 ) 
+ 

ir7 878.1 A 
17- I T 

2150.2 J 2j“™') 
1556.4 J 
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= 28 - 18.41 

= 9.59 

and the score variance is 

V 
311.9 x 607.9 _ 878.1 x 1272.1 

6X (919.8)3 - + * * (2TE0^+22X 

1.34 + 4.11 + 5.39 

667.5 x 888.9 

(1556.4)2 

= 10.84. 

The chi-squared value (1 degree of freedom) is (9.59)2/10.84 8.48 and 

p < 0.005. 

15.3 The standard deviation for the approximation is 

10.84 

16.42 x 6.83 
0.311. 

The error factor for the 90% confidence interval is exp(1.645x 0.311) = 1.67, 

and recalling that the Mantel-Haenszel estimate was 2.40, the confidence 

limits are 2.40/1.67 = 1.44 (lower limit) and 2.40 x 1.67 = 4.01 (upper 

limit). 

15.4 The times at which events occurred, the numbers of patients under 

observation, and the observed and expected relapses in the test group are 

shown below._ 
t N* Nl0 Nl D\ 

73 20 20 40 0 20/40 = 0.50 

86 20 19 39 1 20/39 = 0.51 

91 19 19 38 0 19/38 = 0.50 

135 16 16 32 0 16/32 = 0.50 

194 13 14 27 0 13/27 = 0.48 

231 12 10 22 1 12/22 = 0.55 

252 11 10 21 0 11/21 = 0.52 

296 8 8 16 0 8/16 = 0.50 

392 4 3 7 1 4/7 = 0.57 

414 3 3 6 0 3/6 = 0.50 

The overall score is 

[7 = 3 - (.50 + .51 + .50 -I-1- -57 + .50) = -2.13 

and the score variance is 

V = (.50 x .50) + (.51 x .49) H-f (-50 x .50) = 2.49. 
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The score test is {U)2/V = 1.82 and p > 0.10. This test is the score test 

for 61 = 1 in the proportional hazards model which holds that the ratio of 

the relapse rates of the two treatments is constant (at 9) regardless of time 
since entry into the trial. 

15.5 The most likely value of 6 is the SMR, 

30 

6.47 
= 4.638. 

The error factor is 

exp ( 1.645 y — ] = 1.350, 

so that the 90% confidence interval is from 4.638/1.350 = 3 44 to 4 638 x 
1.350 = 6.26. 

The score test is 
(30 - 6.47)2 

6.47 
= 85.57 

and p < 0.001. 

15.6 Follow-up was stratified by both age and calendar period when cal¬ 

culating the expected number of deaths. The model which underlies the 

above analysis therefore assumes that the ratio of rates in the ankylosing 

spondilitis cohort to those in the reference population is constant for all 
ages and for all calendar periods. 



16 
Case-control studies 

In a cohort study, the relationship between exposure and disease incidence 

is investigated by following the entire cohort and measuring the rate of 

occurrence of new cases in the different exposure groups. The follow-up 

allows the investigator to register those subjects who develop the disease 

during the study period and to identify those who remain free of the disease. 

In a case-control study the subjects who develop the disease (the cases) are 

registered by some other mechanism than follow-up, and a group of healthy 

subjects (the controls) is used to represent the subjects who do not develop 

the disease. In this way the need for follow-up is eliminated. If there is 

no relationship between exposure and disease incidence the distribution of 

exposure among the cases should be the same as the distribution among 

the controls. 
Historically the aim of case-control studies was limited to testing for 

association between exposure and disease. Often little thought went into 

the selection of control groups, or even of cases to be studied. Frequently, 

studies were carried out using whatever cases could be traced from medi¬ 

cal records at a given centre. In this rather careless climate, case-control 

studies fell into disrepute. However, it is now understood that properly 

conducted case-control studies allow quantitative estimates of exposure ef¬ 

fects and this discovery has clarified the fundamental assumptions of the 

method. It has also contributed to a clearer understanding of the design of 

case-control studies issues and to a considerable improvement in the quality 

of studies. 
We shall look first at estimating exposure effects and then consider how 

best to select controls. In the last section of the chapter there is a brief 

account of some of the difficulties which arise when case-control studies are 

based on prevalent rather than incident cases. 

16.1 The probability model in the study base 

Every case-control study of incidence can be seen within the context of an 

underlying cohort which supplies the cases on which the case-control study 

depends. A useful terminology refers to this underlying cohort, observed 

for the duration of the study, as the study base. 
To estimate the quantitative relationship between exposure and disease 
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incidence we need to look more closely at what is happening in the study 

base. Consider the simple situation where the study base is divided into 

two groups, unexposed and exposed, and let 7To, 7Ti be the probabilities that 
a member of the unexposed or the exposed group wifijail over the period 

of the study and become a case. 

The branches in the probability tree shown in Fig. 16.1 refer to the 

different possibilities for a randomly chosen member of the study base, and 

the events are taken in order of occurrence. The first branching of the 

tree refers to exposure. The subject may have been exposed (E+), or not 

(E—); we have taken the probability that a subject was exposed as 0.1, for 

illustration. The next branching refers to failure. The subject may fail (F), 

or survive (S); these are the probabilities already referred to as tti for the 

exposed group and tiq for the unexposed group. The final branching refers 

to whether the subject is selected into the study or not; for illustration we 

have chosen a probability of 0.97 that a failure is registered and therefore 

included as a case, and a probability of 0.01 that a surviving subject is 

selected as one of the sample of controls. Note that the probability that a 

failure is registered is assumed to be the same for both exposure groups, 

and the probability that a healthy subject is chosen as a control is assumed 

to be the same for both exposure groups. 

There are 8 possible outcomes for a member of the study base, corre¬ 

sponding to the 8 tips of the tree, but only 4 of these appear in the study. 

The four outcomes corresponding to the case-control study are: exposed 

cases, exposed controls, unexposed cases and unexposed controls. The 

numbers of subjects in these categories are referred to as D\, H\, Dq, Hq, 

respectively, where D refers to cases, H to healthy controls, and the suf¬ 

fices 1 and 0 refer to exposed and unexposed. The probabilities of the four 

outcomes appearing in the case-control study are calculated by multiplying 

conditional probabilities along the branches, and are shown to the right of 

the figure. 

The estimation of the disease exposure relationship in the study base 

from the results of the case-control study may be approached using either 

a retrospective conditional argument or a prospective conditional argument. 

These correspond to two different ways of reorganizing the probability tree. 

16.2 The retrospective probability model 

In this argument we re-express our model as a model for the conditional 

probabilities of exposure given that the subject was a case (F) or a control 

(S). The reordering of the probability tree to reflect this argument is shown 

in Fig. 16.2. We define the parameter fb as the odds of having been exposed 

for a case. From Fig. 16.2, fix is related to the odds of failure in the study 
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Exposure Failure Selection Probability 

Case 

(Di) 

Control 

(Hi) 

Case 

(Do) 

Control 

(Ho) 

0.1 x 7Ti x 0.97 

0.1 X (1 — 7Ti) x 0.01 

0.9 x vro x 0.97 

0.9 x (1 — 7T0) x 0.01 

Fig. 16.1. The probability model in the study base. 

base by the equations 

^ 0.1 X 7Ti x 0.97 _ 0.1 ^ 7Ti 

= 0.9 x 7T0 x 0.97 _ T9 X V0 

The value of fti can be estimated by D1/D0, the ratio of exposed to unex¬ 

posed cases. Similarly, we define fl0 as the odds of a having been exposed 

for a control. From Fig. 16.2, 

^ 0.1 X (1 — 7Ti) X 0.01 _ 0.1 ^ 1 — 7Ti 

= 0.9 X (1 — 7T0) x 0.01 “ T9 X 1 -7To’ 

and the value of O0 can be estimated by Hi/H0, the ratio of exposed to 

unexposed controls. Finally the odds ratio 

fil _ 7Ti/(1 - 7Ti) 

fio W(1_7ro) 
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Selection Failure Exposure Probability 

,,Y, 0.1 x 7n x 0.97 

0.9 x 7ro x 0.97 

0.1 x (1 -7Ti) x 0.01 

0.9 x (1 -7T0) x 0.01 

Fig. 16.2. The probability tree for the retrospective argument, 

can be estimated by 

Dx/Dq 

Hx/Hq' 

Thus although it is not possible to estimate 7To and 7Ti separately from a 
case-control study it is possible to estimate the odds ratio. 

EXAMPLE: BCG VACCINATION AND LEPROSY 

The data in Table 16.1 are from a rather unusual example of a case-control 
study in which the controls were obtained from a 100% cross-sectional 
survey of the study base.* The aim of the study was to investigate whether 
BCG vaccination in early childhood, whose purpose is to protect against 
tuberculosis, confers any protection against leprosy, which is caused by a 
closely related bacillus. New cases of leprosy reported during a given period 
in a defined geographical area were examined for presence or absence of 
the characteristic scar left by BCG vaccination. During approximately the 
same period, a 100% survey of the population of this area had been carried 
out, and this survey included examination for BCG scar. The tabulated 
data refer only to subjects under 35, because persons over the age of 35 at 
the time of the study would have been children at a time when vaccination 
was not widely available. 

*From Fine, P.E.M. et al. (1986) The Lancet, August 30 1986, 499-502. 
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Table 16.1. BCG scar status in new leprosy cases and in a healthy 
population survey 

BCG scar Leprosy cases Population survey 

Present 101 46 028 
Absent 159 34 594 

Table 16.2. A simulated study with 1000 controls 

BCG scar Leprosy cases Population survey 

Present 101 554 

Absent 159 446 

Exercise 16.1. Estimate the odds of BCG vaccination for leprosy cases and for 

the controls. Estimate the odds ratio and hence the extent of protection against 

leprosy afforded by vaccination. 

This example provides a good illustration of the potential economy 
of the case-control approach. Here a population survey was available for 
control but had it not been there would have been no need to carry out 
such a large-scale exercise. The precision of the odds ratio estimate is 
dominated by the precision of the odds for BCG scar among the 260 leprosy 
cases. Perhaps 1000 suitably chosen controls would be enough to estimate 
the corresponding odds among healthy subjects— there is little gain in 
precision to be obtained by using 80 000! 

Exercise 16.2. Table 16.2 shows the results of a computer-simulated study 

which picked 1000 controls at random. What is the odds ratio estimate in this 

study? 

16.3 The prospective probability model 

In this argument we re-express our model in terms of the conditional prob¬ 

abilities of failure given selection into the study and given exposure status. 

The re-ordering of the conditional probability tree to reflect this argument 

is shown in Fig. 16.3. Define the parameter or as the odds of being a case 

for exposed subjects. By the odds of being a case we mean 

Probability of failure given that the subject is in the study 

Probability of survival given that the subject is in the study 

Ui 

0.1 x 7Ti x 0.97 _ 0.97 7Ti 

0.1 X (1 — 7Ti) X 0.01 0.01 1 — 7Ti ’ 

From Fig. 16.3 
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Selection Exposure Failure Probability 

*0* 0.1 x 7T1 x 0.97 

0.1 X (1 — 7Tl) X 0.01 

0.9 x 7To x 0.97 

0.9 x (1 - 7T0) x 0.01 

Fig. 16.3. The prospective probability model. 

and this can be estimated by the case/control ratio among exposed sub¬ 

jects, Di/Hi. Similarly the odds of being a case for unexposed subjects 
is 

0.9 x 7T0 X 0.97 0.97 tt0 
(jJc\ = - = - V - 

0.9 X (1 - 7T0) X 0.01 0.01 1-TTo’ 

which can be estimated by the case/control ratio among unexposed sub¬ 
jects, Dq/Hq. Finally, the odds ratio 

LUi _ 7Ti / (1 - 7Ti) 

<^0 7T0/(1 — 7T0) ’ 

can be estimated by 
Di/Hx 

Do/Ho' 

This is the same estimate as that obtained from the retrospective approach 
cinrp 

Di/Dq = Di/Hi = DXH0 

HjHo Do/Ho D0H1 

16.4 Many levels of exposure 

In the retrospective argument it is the exposure status which is the re¬ 

sponse (outcome variable); in the prospective argument it is the disease 

status which is the response. The retrospective argument is more natural, 
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(a) Retrospective model (b) Prospective model 

Fig. 16.4. Five exposure categories. 

but the prospective argument leads to the same answers and is more con¬ 

venient when studying exposures with many levels. This is illustrated by 

Fig. 16.4, which shows probability trees for both arguments when there are 

5 exposure categories. Disease status is indicated by F (for cases) or S (for 

controls) and the 5 exposure categories are labelled EO to E4. To construct 

a likelihood using the retrospective likelihood we must use a probability 

model for a response with 5 possible outcomes, but the prospective ar¬ 

gument only requires the binary probability model. The odds of being a 

case for subjects in exposure category i is a constant multiple of the corre¬ 

sponding odds of failure in the study base; with the selection probabilities 

assumed in Fig. 16.1, 
7T,- 0.97 

LOi — 

1 
X 

7r,: 0.01 

As the complexity of the exposure grouping increases, the retrospective 

probability model must become ever more complex, while the prospective 

model remains binary. 
As an example of an exposure with more than two levels we shall look 

at a famous study carried out in the middle of the nineteenth century by 

William Guy.t This was possibly the first case-control study. The level of 

physical activity of the occupations of pulmonary tuberculosis outpatients 

(cases) was compared with that of other outpatients (controls). The data 

tFrom Guy, W.A. (1843) Journal of the Royal Statistical Society, 6, 197-211. 
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Table 16.3. Physical exertion at work of 1659 outpatients 

Level of 

exertion in 

occupation 

Pulmonary 

consumption 

(Cases) 

Other 

diseases 

(Controls) 

Case/ 

control 

raticw. 
Estimated 

odds ratio 
Little 125 385 0.325 1.64 
Varied 41 136 0.301 1.52 
More 142 630 0.225 1.14 
Great 33 167 0.198 1.00 

Table 16.4. Alcohol and tobacco use by oral cancer cases and (controls) 

Alcohol Tobacco (cigarette equivalents per day) 
(oz/day) 0 1- -19 20 -39 40+ 
0 10 (38) 11 (26) 13 (36) 9 (8) 
0.1 - 0.3 7 (27) 16 (35) 50 (60) 16 (19) 
0.4 - 1.5 4 (12) 18 (16) 60 (49) 27 (14) 
1.6 + 5 (8) 21 (20) 125 (52) 91 (27) 

are shown in Table 16.3. There are four levels of exposure corresponding to 

different levels of activity and the table shows the ratio of cases to controls. 

Each of these case-control ratios estimates some constant times the odds 

of failure conditional on exposure level. Since the constant depends on the 

probability of registration for cases and selection for controls it will be the 

same for all exposure levels and the case/control ratios can be compared 
as though they were the odds of failure. 

Looking at the case/control ratios in this way, they suggest that there 
is a steady increase in the odds of failure (and hence the incidence rate) 
with decreasing level of physical activity. The table also shows odds ratio 
estimates with the ‘great’ activity category taken as reference. By defini¬ 
tion, the odds ratio for this reference category is 1. The natural choice 
of reference category is the one with lowest exposure to adverse factor. 
In some cases, however, the natural reference category might contain very 
few cases and controls, leading to poor estimation of all the odds ratios; 
another reference category should then be chosen. 

Exercise 16.3. Table 16.4 shows the distribution of 483 cases of oral cancer by 

level of alcohol consumption and level of tobacco consumption, together with the 

corresponding distribution for 447 controls.1 Calculate the case/control ratios, 

and describe the joint action of the two exposures. 

716. 
/From Rothman, K.J. and Keller, A.Z. (1972) Journal of Chronic Diseases, 23, 711- 
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16.5 Incidence density sampling 

We saw in Chapter 1 that, when the probabilities of failure are small, the 

risk and odds parameters are approximately equal. In these conditions, we 

showed in Chapter 5 that the risk parameter is also approximately equal 
to the cumulative rate, At. It follows that 

7ri/(l-7Ti) 7Ti Ai 
_ _ 

^o/(1 — TTo) Tip Ao 

for rare events. These ratios are known as the odds ratio, the risk ratio, and 

the rate ratio, and the condition for these to be approximately the same 

is usually described as the rare disease assumption. Taken together with 

the arguments developed in this chapter, we see that the odds ratio in a 

case-control study may be used to estimate the rate ratio in the underlying 

study base. There are two additional assumptions in this argument: 

1. all subjects in the base are observed from the beginning of the study 
period, that is, there are no late entries; 

2. all subjects who do not fail from the cause of interest will remain 

under observation until the end of the study period, that is, there is 
no censoring. 

In practice, these assumptions are more likely to be violated than the rare 
disease assumption. 

All of these assumptions can be guaranteed by the simple device of se¬ 

lecting a short enough study period. If insufficient cases would be obtained 

from such a study then the remedy is simple - carry out several consecutive 

short studies. The subjects remaining in the base at the end of one study 

immediately enter the next study. Each study then provides a separate 

estimate of the rate ratio, and provided this ratio remains constant over 

the whole study period, the information can be aggregated using methods 

very similar to those discussed in Chapter 15. 

Taken to the limit, the total time available for the study may be divided 

into clicks which contain at most one case. Those clicks in which no case 

occurs are not informative so there is no purpose in drawing controls, but 

controls are drawn for all clicks in which a case occurs. Thus one or more 

controls are drawn from the study base immediately after the occurrence 

of each case. This design is termed incidence density sampling. 

A study carried out in this way involves matching of controls to cases 

with respect to time. Methods for stratified case-control studies will be 

discussed in Chapter 18, but in the special case where the ratio of exposed 

to unexposed persons in the study base does not vary appreciably over the 

study period, it is legitimate to ignore the matching by time during the 

analysis. 
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One practical problem with this sampling method is that it is possible 

for the same individual to be included in the study more than once. For 

example, a control drawn at one point in time may later become a case 

or may be selected as a control a second time. Is it -legitimate to carry 

out analyses which count the same person more than once? In Chapter 4 

we saw that a single subject observed through several consecutive time 

bands can be treated as a series of different subjects, one for each band. 

In exactly the same way, in a case-control study it turns out to be correct 

to allow subjects to be sampled again in later time bands and treated as 

independent controls. 

16.6 Nested case-control studies and case-cohort studies 

An important use of incidence density sampling is in nested case-control 

studies, where case-control analysis is used in cohort studies. This is an 

attractive option whenever the assessment of exposure of any subject is, for 

some reason or other, expensive. For example, in dietary studies, individual 

diet may have been assessed by very detailed diary records of food intake, 

perhaps referring to several periods of time. The coding and transcription 

of such records for computer analysis is laborious and expensive. Much of 

this work is avoided in a nested case-control study by coding these records 

only for cases, as they occur, and for groups of controls drawn for each 

case. Since there is (usually) little to be gained by drawing more than five 

controls for each case, there are considerable savings to be made by such 

a strategy. We shall discuss the design and analysis of nested case-control 

studies in Chapter 33. 

In recent years some authors have suggested that there are sometimes 

practical advantages in selecting controls by taking a single random sample 

of the cohort at the beginning of the study. This type of study has been 

termed a case-cohort or case-base study. If the disease is rare and there is 

little loss to follow-up, then the analysis may be carried out as usual, after 

first removing from the control sample any individuals who later became 

cases. However, if stratification by time becomes necessary the analysis is 

more difficult. 

16.7 Selection bias 

One important reason for obtaining wrong answers from case-control stud¬ 

ies is incorrect sampling of controls (or cases) from the study base. This is 

called selection bias. It should be clear from this chapter that case-control 

studies will only yield unbiased estimates of 

7ri/(1 - -nr) 

7T0/(1 - 7T0) 
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if the selection probabilities for both cases and controls do not vary between 
exposure groups. Selection bias occurs when this is not true. 

A study can only be truly convincing in this respect if its base is closely 
defined. The type of study with the best defined base is a nested case- 
control study, in which the study base consists of a documented and closely 
traced cohort. This method has proved particularly useful in occupational 
studies, where employment records identify an underlying cohort and pen¬ 
sion schemes provide a mechanism for long term follow-up. 

In a geographically based case-control study the base is defined by res¬ 
idence in a particular geographical area during the period of study. Al¬ 
though all such individuals are not specifically identified, it may never¬ 
theless be possible to carry out a study in such a way that all cases are 
registered and controls drawn in a manner unrelated to exposure. Such 
studies require complete registration of disease in the study area, including 
capture of resident cases diagnosed and treated elsewhere. Control selec¬ 
tion may also be difficult, since few countries have accurate and accessible 
population registers. 

Another important base for case-control studies is the patient list of the 
family doctor. These lists offer good possibilities for representative control 
selection and for complete registration of cases particularly when, as in the 
United Kingdom, access to all medical services is channelled through the 
family practitioner. 

For reasons of economy and convenience, a common choice is the hospital- 
based case-control study in which the case series is made up of all new cases 
presenting at one or more hospitals during the period of the study. Here the 
study base consists of the catchment population comprising all those per¬ 
sons who would have attended these hospitals if they had developed disease 
during this period. This is ill defined and it is difficult to demonstrate con¬ 
vincingly that the probability of control selection from the study base is 
independent of exposure. The device of using other patients, attending for 
unrelated conditions, has two clear difficulties: 

1. catchment populations for different specialities in the same hospital 
do not necessarily coincide, and 

2. patients who are sick with other diseases are not necessarily repre¬ 
sentative of the population of persons free of the disease of interest. 
In particular, factors associated with increased risk of these diseases 
may appear to be protective against the disease of interest simply 
because they are over represented in controls. 

Against these difficulties must be set the claim that recall bias and other 
forms of differential exposure misclassification may be reduced when both 
case and control groups are hospital patients. 

Two further points should be made briefly before concluding this sec¬ 
tion. First, matching is extremely useful in avoiding selection bias although 
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its use is more frequently advocated on the grounds of efficiency. We shall 

return to this discussion in Chapter 18. Second, it is important to draw 

attention to the fact that the best sampling scheme can be invalidated by 

poor subject compliance. If a substantial number of potential cases and 

controls refuse to participate there is considerable potential for bias as a 

result of differential compliance in different exposure groups. All too often 

case-control studies do not report compliance, and the potential for such 

bias is hard to assess. 

16.8 Prevalent cases 

If a case-control study is carried out using prevalent cases it is no longer a 

study of disease incidence and the odds ratio estimate cannot be interpreted 

as an estimate of a ratio of incidence rates. However, such studies can be 

used to study relationships of exposures to the prevalence of disease. 

If the cases can be considered a random sample of those with disease 

in the population, and controls can be considered a random sample of the 

healthy section of the population, then the odds that a case was exposed 

divided by the odds that a control was exposed is an estimate of 

Prevalence odds in exposed population 

Prevalence odds in unexposed population 

When the prevalence in both groups is low this ratio is approximately equal 

to the prevalence in the exposed population divided by the prevalence in 

the unexposed population. 

The remarks concerning sources of bias in incident case-control studies 

apply equally here. In particular, recall bias is a serious problem when in¬ 

terviewing prevalent cases who have been sick and in contact with medical 

professionals for some time. However, the main problems of interpretation 

are those of interpreting prevalence itself; the odds ratio is affected by fac¬ 

tors which influence the duration for which a case, once diagnosed, remains 

in the sampling frame. These include not only factors related to survival, 

but factors relating to migration which may be complex and difficult to 

quantify. 
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Solutions to the exercises 

16.1 The estimate of the odds for vaccination in leprosy cases is 101/159 = 

0.635 as compared with 46 028/34 594 = 1.331 in the healthy subjects. The 
odds ratio estimate is 0.635/1.331 = 0.48. 

16.2 The odds ratio is 
101/159 

554/446 
0.51. 

16.3 The case/control ratios are as follows: 

Alcohol 

(oz/day) 
Tobacco (cigs. per day) 

0 1-19 20-39 40+ 

0 0.26 0.42 0.36 1.12 
0.1-0.3 0.26 0.46 0.83 0.84 

0.4-1.5 0.33 1.13 1.22 1.93 
1.6 + 0.63 1.05 2.40 3.37 

Because the frequencies in the table are small, there is much random vari¬ 

ation, but there is an overall tendency for the ratios to increase both from 

left to right along rows, and from top to bottom down columns. This in¬ 

dicates that both variables have an effect on cancer incidence; there is an 

effect of tobacco when alcohol intake is held constant, and vice versa. 



17 
Likelihoods for the odds ratio 

The data from a simple case-control study (exposed and unexposed) can 

be arranged as a 2 x 2 table such as that set out in Table 17.1. We saw 

in Chapter 16 that there are two ways in which the probability model for 

a case-control study can be set up but that, for both models, the ratio of 

odds parameters are equal to the ratio of odds of failure in the study base. 

17.1 The retrospective log likelihood 

As in Chapter 16, we write U0 for the odds of exposure among controls, 

and fli for the odds of exposure among cases. Our interest is in the odds 

ratio parameter 9 = so we change from the parameters T20 and f2i 

to the parameters Uo and 9, and regard f20 as a nuisance parameter. The 

total log likelihood is the sum of the log likelihood for U0 based on the split 

of the H controls between exposed and unexposed, and the log likelihood 

for fli (= 9flo) based on the split of D cases, 

Hi log(fio) — H log(l + flo) + Di log(0Oo) - £>log(l -I- 9Q0)- 

To use this log likelihood for estimating of the odds ratio 9, we form a 

profile log likelihood by replacing fl0 by its most likely value for each value 

of 9. Unlike the profile log likelihood for the rate ratio in cohort studies, 

this curve cannot be expressed as a simple algebraic expression, but the 

results of section 13.4 and Appendix C can be used to derive a Gaussian 

approximation. 
This derivation follows from the fact that the log odds ratio is the dif¬ 

ference between two log odds parameters, 

log(6>) = log(Ui) - log(Uo). 

Table 17.1. Notation for the 2x2 table 

Exposure Cases Controls Total subjects 

Exposed Di Hi Ni = Di + Hi 

Unexposed Do Ho Ho = Do + Ho 

Total D H N = D + H 
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These are estimated from two independent bodies of data and have most 
likely values 

and standard deviations 

It follows from general results given in section 13.4 and Appendix C that 

the most likely value of the log odds ratio is 

M = Mx - M0 

and the standard deviation of the Gaussian approximation to the log like¬ 

lihood is 

S = V(Si)2 + (S0)2 

This can be used to calculate an error factor for the odds ratio and hence 

an approximate 90% confidence interval. 
The expression for S only differs from that for the rate ratio in a cohort 

study by the addition of the two last terms. These are reciprocals of the 
counts of controls and represent the loss of precision incurred by carrying 
out a case-control study rather than a cohort study. Once the number 
of controls is substantially larger than the number of cases, this loss of 
precision becomes negligible. Hence the common assertion that there is 
little to be gained by drawing more than four or five times as many controls 
as cases. 

Exercise 17.1. For the study of BCG vaccination and leprosy discussed in 

Chapter 16, calculate the expected result of the study using 

(a) the same number of controls as cases; 

(b) twice as many controls as cases; and 

(c) five times as many control as cases. 

Compare the corresponding values of S with that achieved by using the entire 

population as controls. 

Carried out algebraically, these calculations lead to the general result that 

the ratio of the standard deviation of an estimate from a case-control study 

to the standard deviation from a cohort study yielding the same number 
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of cases is 

V1 + (1/m) 

where m is the number of controls expressed as a multiple of the number 

of cases. When m = 1 this expression shows that the standard deviation 

is 1.41 times higher in a case-control study than in a cohort study. When 

m = 5 the factor reduces to 1.10 and when m = 10 this reduces only a little 

more to 1.05. The behaviour of this expression as m increases confirms the 

impression of the last exercise — that there is little gain in efficiency to be 

obtained by selecting more than five times as many controls as cases. 

THE NULL HYPOTHESIS 9 = 1 

We can calculate an approximate p-value for the null hypothesis using 

using any one of the three methods we have encountered earlier. The log 

likelihood ratio test is now based on the profile log likelihood. The Wald 

test is calculated by comparing the most likely value of the odds ratio with 

the null value, log($) = 0, by calculating 

(Y)'- 
Finally, the score test can be derived using the general relationships set 

out in Appendix C. At the null hypothesis the two odds parameters are 

equal and their most likely common value is Ni/Nq. The score, U, is found 

from the gradient of the profile log likelihood with respect to log(fli) at 

this point, which turns out to be 

U = D\ — Ei 

— —(A) — Eq), 

where 

E^ = D 
.Ni 

N ’ 
E0 = D 

No 

N 

can be thought of as the expected numbers of exposed and unexposed 

cases under the null hypothesis. The score variance is obtained from the 

curvature of the profile log likelihood at the null value 0 = 1, which yields 

DHN0N\ 

W3 

As usual, an approximate p-value can be obtained by referring (U)2/V to 
the chi-squared distribution on one degree of freedom. 
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Table 17.2. Tonsillectomy and Hodgkins disease 

Tonsillectomy Cases Controls Total subjects 
Positive 90 {Di) 165 (H i) 255 (Nx) 
Negative 84 (Do) 307 (Ho) 391 (No) 

Total 174 (D) 472 (H) 646 (N) 

Exercise 17.2. Table 17.2 shows data from a study of the relationship between 

tonsillectomy and the incidence of Hodgkin’s disease.* Calculate the maximum 

likelihood estimate of 0 with a 90% confidence interval, and calculate a p-value 

for 9 = 1. 

17.2 The prospective log likelihood 

We now turn to the log likelihood we obtain using the prospective proba¬ 

bility model. As in Chapter 16, we write for the odds that an exposed 

subject is a case, u>o for the corresponding odds for an unexposed subject, 

and change to (uj0,9) where 9 = The log likelihood is again the 

sum of two Bernoulli log likelihood terms, 

D0log(uJo) - N0\og(l + u>0) + D\ log(6C;o) — N\ log(l + 9ujo), 

and the profile log likelihood is obtained by replacing cuo by its most likely 

value at each value of 9. As with the retrospective model, this does not 

lead to a simple algebraic expression, but the Gaussian approximation can 

easily be derived, since 

log(6>) = log(wi) - log(cuo) 

and the log likelihoods for log(uh) and log(a;o) are based on independent 

sets of data. The most likely values of u\ and uj0 are 

M, = log . Mo = log , 

and the corresponding standard deviations are 

As before, the most likely value of log(<9) is 

M = Mi - M0 

*From Johnson, S.K. and Johnson, R.E. (1972) New England Journal of Medicine, 
287, 1122-1125. 
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= log 
(£i/HA 
\Do/H0J 

and the standard deviation of the Gaussian approximation to the log like¬ 

lihood is 

s = vW+W 
[2 ~T ~T ~T 
\w1 + it1 + w0 + h0' 

These results are exactly the same as we obtained using the retrospective 

argument. In the same way we can show that the log likelihood ratio 

and score tests are identical for the two approaches. Indeed, some further 

mathematics' shows that the profile log likelihoods for the two arguments 

are identical. This continues to be the case for more complex patterns of 

exposure and, since the prospective approach is more convenient in these 

situations, it is to be preferred. 

17.3 The hypergeometric likelihood 

Both the probability models discussed above contain a nuisance parameter 

in addition to the parameter of interest, 6. Both lead to profile log likeli¬ 

hood for 9 and depend on profile likelihood behaving in the same way as a 

true likelihood. 

When there is sufficient data, the profile log likelihood does indeed be¬ 

have in this way. However, profile likelihoods are obtained by estimating 

the nuisance parameters, and it is only safe to assume that they have the 

same properties as true likelihoods if the accuracy of that estimation in¬ 

creases as the total number of subjects increases. If the number of nuisance 

parameters increases with the number of subjects, this improved estimation 

is not achieved and profile likelihoods can be misleading. This happens in 

case-control studies if, as the total number of subjects increases, the study 

is divided into an increasing number of small strata in an attempt to deal 

with confounding. For either the prospective or the retrospective likeli¬ 

hood it is necessary to introduce a separate nuisance parameter for each 

stratum, so the number of parameters will increase with the number of 

subjects. The worst case is the individually matched case-control study 

in which the number of strata (and nuisance parameters) is equal to the 

number of case-control pairs. It turns out that the use of profile likelihood 

methods in this situation leads to wrong answers. 

An alternative way of eliminating the nuisance parameter is a condi¬ 

tional approach based on a probability model in which both margins of the 

2x2 table (Table 17.1) are fixed. The set of probabilities for all splits of 

subjects which maintain the same marginal totals is known as the hyper¬ 

geometric distribution. For the table shown in Table 17.1, the probability 
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is 

1 (0)D1 
K(0) X DfiDfiHfi.Ho'. 

where K(d) is chosen so that the probabilities for all possible tables with 

the same margins add up to one: 

K(9) E 
Possible tables 

(of1 

D\\Dq\H\\Hq\ ' 

This distribution depends only on the parameter 9 and can be used to cal¬ 

culate exact p-values and confidence intervals for the odds ratio as outlined 

in Chapter 12. The use of these methods is illustrated in section 17.4. 

The likelihood based on this distribution is called the hypergeometric 

likelihood. Because of the function K(0), it is difficult to calculate except 

when the number of possible tables consistent with the margins is small. 

We shall consider an important special case in Chapter 19 and give a more 

general treatment of this likelihood in Chapter 29. For the present we 

note that the hypergeometric likelihood does lead to a simple score test for 

6 = 1. The score is exactly the same as for the profile log likelihoods, that 

is 

U = D1-E1, 

but the score variance can be shown to be 

DHNqNi 

(N)2(N — 1)' 

This differs from the expression derived from the curvature of the profile 

log likelihood by the term (N - 1) in place of N in the denominator. 

The difference this makes to the value of the variance is usually negligible. 

The one situation where it does make a difference is in matched studies 

where the number of subjects in each stratum is very small. In the worst 

case of the 1:1 individually matched study, N = 2 in every stratum and 

the profile likelihood argument wrongly estimates the score variance by a 

factor of two. We shall, therefore, return to the hypergeometric likelihood 

when discussing the analysis of individually matched case-control studies 

in Chapter 19. 

17.4 Exact methods 

The use of the hypergeometric distribution for exact tests and confidence 

intervals follows exactly the same principles as set out in Chapter 12. This 

is illustrated in this section using some data drawn from a case-control 

study set up to investigate an excess of childhood leukaemia cases in the 



172 LIKELIHOODS FOR THE ODDS RATIO 

Table 17.3. Paternal radiation exposure in leukaemia cases and controls 

Paternal 

exposure 

Leukaemia 

cases 

Local 

controls Total 

>100 mSv (Exposed) 3 1 4 

<100 mSv (Unexposed) 1 19 20 

Total 4 20 24 

Table 17.4. Hypergeometric log likelihood ratios and probabilities 

D* 

LLR 

{0=1) 

Hypergeometric probability 

(0 = 1) (l9 = 2.440) (0 = 1534.1) 

0 -0.785 0.375645 0.202245 
1 -0.105 0.462332 0.464450 0.000001 
2 -1.451 0.148607 0.283314 0.000460 
3 -4.252 0.013209 0.048511 0.049540 
4 -9.271 0.000206 0.001480 0.949998 

Total 1.0 1.0 1.0 

vicinity of a nuclear reprocessing plant (see Exercise 11.8). The data set 

out in Table 17.3 concern occupational radiation exposure in fathers of 4 

cases and fathers of 20 local controls.* 

There are five possible tables with the same margins as Table 17.3, 

with values of D\ (the number of exposed cases) ranging from zero to four. 

The hypergeometric distribution gives the conditional probability for each 

table as a function of the odds ratio parameter, 0, and the log likelihood 

for any value of 9 is calculated by taking the log of the probability of the 

observed outcome D\ = 3. The most likely value of 9 is 37.345* and the log 

likelihood ratio which compares this with the null value (9 = 1) is —4.252. 

Table 17.4 shows, in the column headed LLR, similar log likelihood ratio 

comparisons for each of the five possible table and, in the next column, 

the conditional probabilities of these tables when the null hypothesis is 

true. The p-value is the sum of probabilities of the observed table and of 

all tables which are in greater conflict with the null value. In this case 

p = 0.013209 + 0.000206 = 0.013415. The one-sided and two-sided p-values 

are identical in this case. This way of calculating the p-value for a 2 x 2 

table is called Fisher’s exact test. 

Similar ideas are used to calculate ‘exact’ confidence intervals. To find 

tFrom Gardner, M.J. et al. (1990) British Medical Journal, 300, 423-429. 

^Note that this is not the same value as that obtained with the profile likelihood 
which is (3 X 19)/(1 x 1) = 57. 
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the limits of the 90% interval we search for values of 9 which give one-sided 

p-values of 0.05. These values are 2.440 (lower limit) and 1534.1 (upper 

limit) and the corresponding hypergeometric distributions are shown in 

the last two columns of Table 17.4. At 9 = 2.440 the one-sided p-value is 

0.0485il + 0.001480 = 0.04991 and at 9 = 1534.1 the one-sided p-value is 

0.000001 + 0.000460 + 0.049540 = 0.050001. Values of 9 outside the range 

from 2.440 to 1534.1 would have smaller p-values than 0.05 and the fre- 

quentist theory would therefore suggest that we should pronounce ourselves 

90% confident that 9 lies within this range. As we have seen in Chapter 12, 

this is a very technical use of the word confident and no epidemiologist 

would really believe that 9 could really take such large values. The ex¬ 

treme finding is obtained, at least to some extent, because the radiation 

level chosen here to divide exposed and unexposed groups was chosen after 
seeing the data. 

Solutions to the exercises 

17.1 The following shows the expected results of the three studies. These 

have been calculated by splitting the controls between scar present and 

scar absent categories in the proportions 46 028/80 622 and 34 594/80 622 

respectively. 

Expected controls 

BCG scar Cases Population (a) (b) (c) 
Present 101 46 028 148 296 740 

Absent 159 34 594 112 224 560 

Total 260 80 622 260 520 1300 

The standard deviations for the log odds ratio estimate are worked out us¬ 

ing the formula S = ^JI/Dq + 1/Di + 1/Hq + 1/Hi and are 0.179, 0.155, 

and 0.139 respectively. The standard deviation using the full data is 0.127. 

The gain in precision with increasing numbers of controls clearly follows a 

law of diminishing returns. 

17.2 The maximum likelihood estimate of 9 is the observed odds ratio: 

90/84 

165/307 
1.99. 

and _ 

S = ./— + — + — + — = 0.180. V 84 90 307 165 

For calculating 90% confidence limits, the error factor is exp(l.645x0.180) = 

1.34. The limits are therefore 1.99/1.34 = 1.48 (lower limit) and 1.99 x 

1.34 = 2.67 (upper limit). 
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The expected number of exposed cases is given by 

255 
E1 = 174 x ^ = 68‘68 646 Vv, 

so that the score, U, is (90 — 68.68) = 21.32. The score variance is 

174 x 472 x 255 x 391 

(646)3 
30.37. 

The score test is (21.32)2/30.37 = 14.97, (p < 0.001). 



18 
Comparison of odds within strata 

This chapter deals with methods for analysing stratified case-control stud¬ 

ies which closely parallel the methods for cohort studies discussed in Chap¬ 

ter 15. 

18.1 The constant odds ratio model 

As an example we return to the study of the effect of BCG vaccination upon 

the incidence of leprosy. Since leprosy incidence increases with age among 

young people, age is certainly a variable which would have been controlled 

in an experiment. In Chapter 16 it was shown that BCG-vaccinated in¬ 

dividuals had just under one half of the incidence of leprosy as compared 

with unvaccinated persons, but age was ignored in the analysis. This could 

have biased the estimated effect of BCG vaccination because BCG vacci¬ 

nation in the area (Northern Malawi) was introduced gradually in infants 

and young children, so that people who were older during the study period, 

having been born at earlier dates, were less likely to have been vaccinated. 

As a result, on average the vaccinated group will be younger than the un¬ 

vaccinated group. This means that, even if BCG vaccination were totally 

ineffective, one would expect to observe lower rates in vaccinated members 

of the base cohort, simply as a result of their relative youth. 

Table 18.1 subdivides these data by strata corresponding to 5-year age 

Table 18.1. BCG vaccination and leprosy by age 

Age 

BCG scar Odds 

ratio 

estimate 
Leprosy cases Healthy population 

Absent Present Absent Present 

0-4 1 1 7593 11719 0.65 

5-9 11 14 7143 10184 0.89 

10-14 28 22 5611 7561 0.58 

15-19 16 28 2208 8117 0.48 

20-24 20 19 2438 5588 0.41 

25-29 36 11 4356 1625 0.82 

30-34 47 6 5245 1234 0.54 
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bands. The table also shows age-specific odds ratios. Although there is 

random variation, there is no systematic trend of the odds ratio with age, 

and it seems reasonable to make the assumption that the odds ratio pa¬ 

rameter is the same in all age bands. In the next sectjQfi we show how an 

estimate of this common odds ratio can be calculated. 

18.2 An estimate of the common odds ratio 

In the prospective approach to the analysis, the assumption of a com¬ 

mon odds ratio implies that cu[/u>q is constant, so that the model can be 

expressed in terms of the odds ratio parameter 9 and the Uq parameters. 

Alternatively, in the retrospective approach the model is expressed in terms 

of 9 and the parameters Qq. In both approaches, replacing the nuisance 

parameters by their estimates leads to the profile likelihood for 6. If there 

are not too many strata, and the data are not too sparse in each stratum, 

then the profile likelihood for 9 can be used to find the most likely value and 

the supported range. For coarsely stratified data sets such as Table 18.1, 

these conditions are met. Such an analysis is not feasible by hand, but 

would usually be carried out on a computer using logistic regression (see 
Chapter 23). 

When the data are very finely stratified so that each stratum contains 

very few cases and controls, the profile likelihood approach can be unre¬ 

liable, and the hypergeometric likelihood should be used. The total log 

likelihood is then obtained by adding together the hypergeometric log like¬ 

lihoods for the different strata. Again, the most likely value M and the 

standard deviation S cannot usually be computed by hand, but would be 

carried out using a conditional logistic regression program (see Chapter 29). 

However, the calculations for the score test for 9 = 1 are straightforward. 

For a single stratum the score under the hypergeometric likelihood is 

U = Di - Ex 

where D\ is the observed number of exposed cases and E\ = DNi/N is 

the expected number under the null hypothesis. The score variance is 

_DHNoNi_ 

{N)2(N - 1)' 

Since every stratum contributes additively to the overall log likelihood, 

the overall score is a sum of contributions from each stratum of exactly the 

same form as above. Thus, the score is 

U = Y1(D\-E\) 
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where 

E\ 

and the overall score variance is 

-1)' 

Exercise 18.1. Show that the first age band in Table 18.1 makes a contribution 

of —0.21 to U and 0.48 to V. 

The overall test statistic is obtained by repeating these calculations for 
each stratum and yields 

U = -0.21 - 0.69 - 6.68 - 6.56 - 8.11 - 1.76 - 4.06 = -28.07 

Dt— 

and 

V = 0.48 + 6.05 + 12.18 + 7.38 + 8.22 + 9.22 + 8.09 = 51.62. 

The approximate chi-squared value on one degree of freedom is 

(Uf/V = 787.92/51.62 = 15.26. 

The statistic U has a negative sign because the exposure is protective — the 
observed number of vaccinated cases is less than would have been expected 
had vaccination been ineffective. 

Exercise 18.2. Verify that, when there is only one case per stratum, the test 

becomes identical to the log rank test discussed in section 15.5. 

This test was proposed by Mantel and Haenszel. They also proposed a 

way of calculating a nearly most likely value for 9. This is suggested by an 

algebraic rearrangement of the equation for the score: 

U = 

V- DjHj - DjHj 
Nt 

= 

where Ql = D\Hq/N1 and Rl = DqHI/N1. The usual estimate of the odds 

ratio in stratum t is Q1 /RL, and this suggests estimating the common odds 

ratio, 9, by 

Q1 + Q2 + • ■ ■ Q 

Rl+R2 + ... = R' 
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When the true value of 6 is close to 1, this Mantel-Haenszel estimate is 
almost as precise as the the most likely value of 0 according to the hyper¬ 
geometric likelihood. It can only be improved upon for odds ratios which 

differ substantially from one. 

Exercise 18.3. Show that the Mantel-Haenszel estimate of the odds ratio for 

the data of Table 18.1 is 0.587. 

Note that allowing for confounding by age has weakened the estimated 

protective effect of vaccination. This is now about 41% rather than 52% - 

a modest adjustment. This is in accord with the general experience that 

confounding only causes substantial modification of rate ratios in quite 

extreme circumstances. 
The usefulness of the Mantel-Haenszel estimate in practice was limited 

by the fact that, rather surprisingly, no expression was available for its 

standard deviation until relatively recently. Several estimates have now 

been proposed, most of them rather awkward to calculate. For most prac¬ 

tical purposes, a good estimate is provided by the same expression as for 

the cohort study version (Chapter 15): 

Exercise 18.4. For the data of Table 18.1, calculate the 90% confidence interval 

for the age-adjusted vaccine effect. 

18.3 Improving efficiency by matching 

In Exercise 16.2 we repeated the analysis of the leprosy study using a sample 

of 1000 controls drawn randomly from the healthy population, with only a 

modest loss in the precision of our estimate of the odds ratio. The position 

changes, however, when we stratify by age in the analysis. 
Table 18.2 shows the way the simulated data lie. It is clear that the 

precision of the age-controlled odds ratio estimate will not be as good as 

we would have expected with more than 3 times as many controls as cases. 

The study has 238 controls for the 2 cases in the 0-4 year age group yet 

only 80 controls for the 53 cases in the 30-34 year age group. 
With such a design, many controls are wasted and the efficiency of the 

study will be lower than it would be if the ratio of controls to cases were 
held constant within strata. This is called matching. If the study is carried 
out so as to achieve a constant ratio of cases to controls in broad groups 
it is called a group or frequency matching. If a set of matched controls 
are selected specifically for each case, it is called individual matching. Ta¬ 
ble 18.3 shows a simulated study in which the number of controls has been 
maintained at 4 times the number of cases in all age groups. 

Exercise 18.5. For the data set out in Table 18.2, the values of Q,R,U,V are 
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Table 18.2. The simulated study stratified by age 

BCG scar 
Cases Controls 

Age Absent Present Absent Present 
0-4 1 1 101 137 
5-9 11 14 91 115 
10-14 28 22 82 101 
15-19 16 28 28 87 
20-24 20 19 25 69 
25-29 36 11 63 21 
30-34 47 6 56 24 

Table 18.3. A simulated group-matched study 

BCG scar 
Cases Controls 

Age Absent Present Absent Present 
0-4 1 1 3 5 
5-9 11 14 48 52 
10-14 28 22 67 133 
15-19 16 28 46 130 
20-24 20 19 50 106 
25-29 36 11 126 62 
30-34 47 6 174 38 

30.00, 51.57, 21.57, and 39.68. For Table 18.3 the corresponding values are 32.14, 

56.54, 24.40, and 43.27. Compare the estimates, confidence intervals, and score 

tests for the two sets of data. 

In practice, age is usually a very strong confounder and almost all case- 

control studies are matched for age. At one stage, simultaneously matching 

for as many other confounders as possible was frequently advocated. It is 

now clear that this is not a good idea, but matching is such an intuitively 

appealing idea to many epidemiologists that some discussion of the points 

for and against matching is of interest. 

First it should be noted that an appreciable gain in precision is achieved 

only for a confounding variable which is very strongly related to the ex¬ 

posure of interest. For less strongly related confounders matching leads to 

only modest gains in precision while complicating the study design. More 

seriously, if a variable is matched in the design, the ability to examine the 

effect of that variable is lost since its distribution in the controls will match 

that in the cases rather than that in the study base. One must be confident 
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Table 18.4. Bias due to ignoring matching 

Stratum 

Cases Controls Odds 

ratio Exposed Unexposed Exposed Unexposed 

1 89 11 80 20 2.0 

2 67 33 50 50 2.0 

3 33 67 20 80 2.0 

Total 189 111 150 150 1.7 

of the role and status of the variable before accepting such a limitation. 

Secondly, much of the early popularity of matching stemmed from a mis¬ 

conception that variables matched in the design can be ignored in analysis, 

since differences between cases and controls could then not be attributable 

to these variables. It is now understood that this practice leads, in general, 

to incorrect estimates of odds ratios. This is demonstrated by Table 18.4. 

There are 100 cases and 100 controls in each stratum so that, overall, the 

cases and controls are matched with respect to stratum. However, despite 

the matching, the marginal odds ratio is 1.7 rather than 2.0, the value 

within strata. We have already warned of this behaviour of the odds ratio 

in section 15.7; even when confounding by age is removed by matching, 

the marginal odds ratio is not equal to the conditional (age-specific) odds 

ratios. 

The bias that arises by ignoring matching in the analysis is always 

towards 9 = 1. The only circumstances under which it does not occur is 

when the matching variable is unrelated to exposures of interest. Only 

then may the matching be ignored, but in that case the variable is not a 

confounder and there would seem to be no purpose in matching for it in the 

first place. However, we shall see in the next section that there are reasons 

for matching other than for the efficient control of confounding. Some of 

these can lead to circumstances in which the matching can be ignored in 

analysis, but usually this is not the case. 

Taken together, these two points lead us to a position where a matching 

variable must be regarded as a confounder and must be used in the analy¬ 

sis. From this it follows that estimates of the effects of all other exposures 

will be controlled for the matching variable. But this may not be what we 

want to do. For example, in perinatal epidemiology it may be appropriate 

in some analyses to consider birthweight as a confounder while for other 

analyses this may not be sensible. If the study is matched for birthweight 

at the design stage, analyses which seek to hold birthweight constant are 

easily carried out using stratified comparisons, but analyses which do not 

hold birthweight constant are much more difficult. Indeed they would be 

impossible without knowledge of the sampling fractions for drawing con¬ 

trols from the base within strata. These complexities are best avoided and 
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Fig. 18.1. To match or not to match? 

matching for variables which may not be regarded as confounders for some 
questions is in general a mistake. 

Finally, matching may actually reduce the efficiency of a study. This 

occurs when the matching variable is strongly related to the exposure, but 

not to disease risk (so that, again, it is not a confounder). This is called 

overmatching. It leads to a loss in efficiency because the effect of the 

matching is only to narrow the range of exposure studied. A good example 

would be a study of diet and some childhood illness using siblings of cases as 

controls. While such a study would be expected to yield the correct answer 

if properly analysed, it would be very inefficient — since siblings usually 

eat at the same table of the same prepared meals, the only information 

available for estimating the effects of interest will be from sibling pairs 
with discordant diets. 

This discussion is summarized in Fig. 18.1. The letters D, E, and M 

refer to disease, exposures of interest, and matching variable respectively. 

Connecting lines indicate statistical relationship. Case (a) is the only one 

in which matching leads to a more precise estimate of the odds ratio. Case 

(b) is overmatching and leads to a loss of precision. In cases (a) and (b), 

the matching must be preserved in the analysis, whereas in cases (c) and 
(d) it may be ignored. 

The above discussion tacitly assumes that controls are matched to cases 

in rather broad strata, such as 5- or 10-year age bands. It applies equally 

to individually matched studies; in principle there is no difference between 
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these options, although in practice the latter present rather more difficult 

analysis problems as a result of the very large number of nuisance pa¬ 

rameters introduced by such fine stratification. These will be discussed in 

Chapter 19. Although matching must usually be preserved during analysis, 

it is not always necessary to preserve individual matching. If matching of 

controls to cases is only with respect to well defined, accurately measured 

variables then a coarser grouping at the analysis stage is both possible and 

acceptable. For example, if matching is only by age, analysis by 5- or 10- 

year bands will be quite satisfactory even if specific controls were drawn 

for each case. However, matching by characteristics such as neighbourhood 

or family does not allow later aggregation of strata. 

18.4 Other reasons for matching 

Matching is usually justified on the grounds of statistically efficient control 

for confounding. Close examination of this suggests that matching should 

be used as little as possible and only for variables, like age, which are 

strongly related to both disease and exposure and whose status is unequiv¬ 

ocally that of confounder. However, a cursory review of the epidemiological 

literature shows that matching is used much more widely than this argu¬ 

ment would support. This is because controls are often matched to cases 

for reasons which have nothing to do with control for confounding. 

INCIDENCE DENSITY SAMPLING 

One example is incidence density sampling, which is simply matching con¬ 

trols to cases with respect to time (date of occurrence). Although time 

may be a confounder (when both disease rate and exposure distribution in 

the study base vary during the study period), incidence density sampling 

is more usually employed for simple practical reasons. It will often be pos¬ 

sible to ignore this matching in the analysis or, at most, to group coarsely 

on time. 

DEFINING THE EXPOSURE WINDOW 

Until this point we have assumed that each individual can be classified as 

exposed or unexposed and that this assignment holds for all time. However, 

many exposures in epidemiology vary over time, perhaps quite rapidly. 

When this is the case, it is necessary to specify the time period for assessing 

relevant exposure. This exposure window is usually clearly definable for 

cases, by working backwards from the point at which disease was first 

recognized, but comparable rules for controls can be difficult to specify. 

Things are much easier when one or more controls are matched to each 

single case with respect to time of diagnosis of the case; the time window 

used for assessing the relevant exposure of each case is carried over to the 
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Fig. 18.2. Neighbourhood matching. 

matched controls, thus ensuring comparability. We shall encounter a good 

example of this in Chapter 19. 

AVOIDING SELECTION BIAS 

Another example is where controls are matched to cases in order to min¬ 

imize selection bias. This is usually done either because the study base 

has not been precisely defined or because there is no accurate way of sam¬ 

pling it. For example, in a geographically based study selection bias may be 

caused by the lack of an accurate population register of the study area. Un¬ 

fortunately, construction and maintenance of such registers is enormously 

costly and will rarely be feasible for a single case-control study. However, 

if the study is closely matched, better sampling may be possible. Fig. 18.2 

illustrates this for a geographically based study, divided by the grid into 

small neighbourhoods. The dots represent cases occurring during the study 

period. A study which matched for neighbourhood would sample controls 

only from those neighbourhoods in which a case occurred and it would 

only be necessary to construct lists of eligible controls for these. If neigh¬ 

bourhoods are sufficiently small this involves little work. Of course, the 

definition of neighbourhood does not have to be in terms of a regular grid 

for this argument to apply. A similar argument justifies drawing controls 

from the list of patients of the family doctor of each case. 
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Solutions to the exercises 

18.1 The number of exposed cases, D{, is 1 and the expected number 

under the null hypothesis is 
-»Y, 

E\ = 2 x 
11720 

11720 + 7594 
1.21 

so that the contribution to U is (1 — 1.21) = —0.21. The contribution to V 

is 

2 x 19312 x 7594 x 11720 

(19314)2 x 19313 

18.2 The expression for the ‘expected’ number of exposed cases in each 

stratum, E\, is identical to that given in section 15.5. Thus, the score 

statistics, U, are identical. When there is only one case per stratum, Dt = 1 

and = Nl — 1 so that the contribution of stratum t to V is 

yt = (JV‘ - IWN = NjNj 
(N‘f (N‘ - 1) (JV1)2’ 

which is identical to our previous expression. When using the log rank test 

with tied event occurrence times (so that Dl > 1), the variance formula 

given in this chapter should be used. 

18.3 The first contribution to the numerator (top) and denominator (bot¬ 

tom) of the Mantel-Haenszel estimate are as follows: 

! 1 x 7593 j lx 11719 

^ ~ 1 + 1 + 7593 + 11719’ ~ 1 + 1 + 7593 + 11719' 

Continuing the calculation, we get: 

Age Q* Rt 

0-4 0.39 0.61 

5-9 5.76 6.46 

10-14 9.34 16.01 

15-19 5.96 12.53 

20-24 5.74 13.86 

25-29 7.95 9.70 

30-34 4.82 8.88 

Total 39.96 68.05 

Note that the ratio Q/R for each row gives the odds ratios calculated in the 

previous exercise. The Mantel-Haenszel estimate is 39.96/68.05 = 0.587. 
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18.4 V is given in the text following the first exercise as 51.62 and Q and 

R were calculated in the second exercise to be 39.96 and 68.05 respectively. 
Using the formula S = y/V/(QR), 

0 / 51.62 

“ V 39.96 x 68.05 ~ °'138 

The error factor for 90% confidence limits is exp(1.645 x 0.138) = 1.255 

so that the confidence limits for the odds ratio controlled for age are 

0.587/1.255 = 0.47 (lower limit) and 0.587 x 1.255 = 0.74 (upper limit). 

18.5 The analysis of the two sets of data yields the following results: 

Table 18.2 Table 18.3 

Estimate (9) 0.582 0.568 
S (log(0)) 0.160 0.154 
Error factor 1.301 1.289 
Lower 90% limit 0.447 0.441 
Upper 90% limit 0.757 0.732 
(Uf/V 11.73 13.76 

In this case the increase in precision achieved by matching is not great. 



Individually matched case-control 
studies 

Analyses which preserve the matching of individual cases to their controls 

follow similar principles to those of Chapter 18. The strata are now the 

sets made up of each case and its matched controls. Studies designed to 

have a fixed number of controls, m say, drawn for each case, will be referred 

to as l:m matched studies. 

19.1 Mantel—Haenszel analysis of the 1:1 matched study 

For reasons discussed in Chapter 18, the use of profile likelihood gives mis¬ 

leading estimates of odds ratios when there are a large number of strata 

with little data in each stratum. However, the Mantel-Haenszel method 

works perfectly well in these circumstances. The calculations are particu¬ 

larly easy in the 1:1 case, and illustrate ideas which are important for our 

later discussion of the likelihood approach. 

The results of 1:1 matched studies are usually presented in 2 x 2 tables 

such as Table 19.1.* These data were drawn from the same study as re¬ 

ported in Chapter 17, and concern the relationship between tonsillectomy 

history and the incidence of Hodgkin’s disease. The total study included 

174 cases and 472 controls, but the controls were siblings of the cases, and 

the authors felt that the matching of cases and sibling controls should be 

preserved. They also wished to control for age and sex and therefore re¬ 

stricted their analysis to 85 matched case-control pairs in which the case 

and sibling control were of the same sex and matched for age within a 

specified margin. Note that, in the construction of matched sets, the orig¬ 

inal 174 cases and 472 controls have been reduced to only 85 cases and 85 

controls. 
Tables such as Table 19.1 can be confusing because we are used to see¬ 

ing tables that count subjects, while this table counts case-control sets. 
The four cells of the table correspond to the four possible exposure con¬ 
figurations of a case-control set. These are illustrated in terms of a tree 
in Fig. 19.1. The first branching point is according to whether or not the 
control was exposed (denoted E+ and E- respectively), while the second 

Prom Cole, P. et al. (1973) New England Journal of Medicine, 288, 634. 
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Table 19.1. Tonsillectomy history in 85 matched pairs 

History History of control 
of case Positive Negative 

Positive 26 15 
Negative 7 37 

Control Case Hi Hq D\ Do 

Fig. 19.1. Exposure configurations for 1:1 sets. 

branching is according to exposure of the case. The frequencies in Ta¬ 
ble 19.1 refer to counts of these four configurations. 

Exercise 19.1. How often did each of the exposure configurations of Fig. 19.1 

occur? 

In the analysis of individually matched studies the strata are case- 
control sets so that, in the notation of Chapter 18, t indexes sets. The 
number of subjects in each stratum is iV* = 2, and since each stratum 
contains one case and one control, Dl and Hl are always 1. The values of 
D[, Dq, H{, and Hq for each exposure configuration are shown in Fig. 19.1. 
In this figure and henceforth we will omit the superscript t for clarity, and 
remember that the symbols refer to values in a single case-control set. 

Exercise 19.2. What are the contributions of each configuration to Q and 

R in the Mantel-Haenszel estimate of the odds ratio? Similarly what are the 

contributions to the score and score variance, U and V? Which configurations 

contribute to estimation and testing? 

It can be seen that only two exposure configurations make any contribution 
to estimation and testing of the odds ratio. These are the sets in which the 
exposure status of case and controls differ and are called discordant sets. 
The remaining sets are called concordant sets. In our current example, 63 
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of the case-control sets are concordant and are ignored. 

Exercise 19.3. For the tonsillectomy data, what are the values for Q, R, U, VI 
Using the methods of Chapter 18, estimate the odds ratio, its 90% confidence 
interval, and a p-value for 0 = 1. -»Y, 

The odds ratio estimate is very close to that obtained in the analysis of 
Chapter 17, but so much data has been lost in this analysis that the result 
is no longer statistically significant. It is easy to criticize an analysis which 
discards so much data, but when it is necessary to preserve the matching 
of controls to cases it is not easy to see how one can adjust for the effects of 
additional variables by stratification, since the case and its control may fall 
within different strata. At the time this study was reported there would 
have been no alternative but to discard such sets. Nowadays, this problem 
is easily overcome by use of the regression methods to be described in 
Part II. 

Before leaving this example, it is interesting to note that the above anal¬ 
ysis is not the one originally reported. In their first report, the researchers 
subscribed to the misconception discussed in Chapter 18 — that the match¬ 
ing for age, sex, and family was sufficient to control for these variables and 
that subsequently the matching could be ignored in the analysis. 

Exercise 19.4. Show that the odds ratio estimate obtained by ignoring the 
matching is less than that obtained by the correct analysis. 

19.2 The hypergeometric likelihood for 1:1 matched studies 

The hypergeometric likelihood is obtained by arguing conditionally upon 
both margins of the 2x2 table, and depends only upon the odds ratio 
parameter. It is usually difficult to compute, but its use is only necessary 
when the data within strata are few. This is the case for individually 
matched studies and the hypergeometric likelihood must be used. Luckily 
in this case the computations are quite easy — particularly in the 1:1 case. 

Fig. 19.2 derives the probability of each exposure configuration by mul¬ 
tiplying along branches of the tree in the usual way and also lists the total 
number of subjects in the set who were exposed, N\. The odds that the 
control in the set was exposed is denoted by flo and the odds that the case 
was exposed by fii, and we have written K for the expression 

1 

(1 + flo)(l + ffi) 

which occurs in all four probabilities. To obtain the hypergeometric like¬ 
lihood we argue conditionally on the number of subjects exposed, N\. It 
is clear from the figure that, when Ni = 2, there is only one possible ex¬ 
posure configuration; the conditional probability of the observation is 1 
and there is no contribution to the log likelihood. Similarly, there is no 
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Control Case Mi Probability 

Di/(i + - E+ 2 ftofii K 

Do/(1 + D0)/E+ 

/ 1/(1 + Qi> - E- 1 n0 k 

'V ill/(l + ' E+ 1 fii K 

1/(1 + fio)\ E_ 

1/(1 + dd" - E- 0 K 

Fig. 19.2. Probabilities for a case-control set. 

contribution to the log likelihood from sets in which Ni = 0. These con¬ 

figurations correspond to the concordant sets which were also ignored in 

our previous analysis. However, when Ni — 1 the exposure configuration 

could be either the second or third. These are the possible configurations of 

discordant sets. The observed split of discordant sets between the second 

and third configurations determines the log likelihood. 

The conditional probabilities that a discordant set is of the third type 

(case exposed, control unexposed) and the second type (case unexposed, 
control exposed) are 

VtiK ^ ft0 K 

£IqK T- f},\K Q,qK T fiiK 

respectively, and the conditional odds that the case was exposed is the 

ratio of these, f2i/fi0. This is the odds ratio parameter 9, assumed in our 

model to be constant for all the case control sets. The conditional argument 

therefore leads to a Bernoulli log likelihood based on splits of discordant 

sets into those in which the case is exposed and those in which the case is 

unexposed, the odds for such splits being 9. In our data, such sets split 

15:7 and the log likelihood is 

151og(0) — 221og(l + 9). 

Exercise 19.5. Calculate the most likely value of 9, a 90% confidence interval 
and the score test for the null hypothesis 9 — 1. These results of this exercise 
should agree precisely with those obtained using the Mantel-Haenszel method. 
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Table 19.2. Screening history in breast cancer deaths and matched 

controls 

Status Number of 

of the controls screened 

case 0 1 2 3 

Screened 1 4 3 1 

Unscreened 11 10 12 4 

19.3 Several controls per case 

The arguments outlined above may be extended to the situation in which 

there are several controls for each case. As before, we start with the Mantel- 

Haenszel approach. 

Table 19.2 shows the results of a case-control study of breast cancer 

screening. Cases are deaths from breast cancer and each case is matched 

with three control women.! The exposure of interest is attendance for 

breast cancer screening. If screening is effective in prolonging life, screened 

women should have lower mortality rates and the odds ratio estimate from 

the case-control study should be less than 1. Note that as in Table 19.1, 

the table counts case-control sets and not women. 

This study illustrates one of the reasons for matching discussed in Chap¬ 

ter 18. Women who die from breast cancer usually do so some years after 

initial diagnosis and during the period between diagnosis and death they 

would not be screened. Thus, controls would have a greater opportunity to 

be screened than cases. This difficulty was overcome by determining the 

relevant exposure window, the screening history of the controls was assessed 

over the period up to the time of diagnosis of the case, so that the screen¬ 

ing histories of cases and controls are comparable. It was only possible to 

deal with this problem in this way because the study matched controls to 

individual cases. 
Table 19.2 demonstrates the usual way such data are presented. How¬ 

ever, it is very difficult to perceive any pattern — even as to whether or 

not screening appears to be a protective. To understand the analysis, we 

shall start by reordering the data as a tree. Fig. 19.3 illustrates the possible 

exposure configurations. The first three branches represent the exposure 

status of the three controls, the upper branch representing exposed (E+) 

and the lower unexposed (E—). Because we do not wish to differentiate 

between individual controls, this section of the tree may be abbreviated. 

For the first two controls, we do not need to differentiate between the con¬ 

figurations (E+, E—) and (E-, E+). These are simply grouped together as 

having 1 control exposed and we write the figure 2 at this point to remind 

us that branches emanating from this point are double branches. Similarly, 

after consideration of the third control we group together the 3 configu- 

tProm Collette, H.J.A. et al. (1984) The Lancet, June 2, 1984, 1224-1226. 
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Fig. 19.3. Exposure configurations for 1:3 sets. 

rations with 2 exposed controls and the 3 configurations with 1 exposed 

control. The final branching represents the exposure status of the case. 

Exercise 19.6. In the screening data, how frequently do each of the eight types 

of exposure configuration occur? 

We shall first analyse these data by the Mantel-Haenszel method. In 

the next section, we shall discuss the likelihood approach and show how it 

suggests a more useful arrangement of the table. 

Exercise 19.7. Tabulate the values of Q, R, U, and V for these eight tables 

and hence calculate the Mantel-Haenszel significance test, odds ratio estimate 

and an approximate 90% confidence interval. 

This analysis shows that the study finds a substantial and statistically 

significant reduction in mortality as a result of breast cancer screening. 

19.4 The likelihood 

The analysis of these data by use of the hypergeometric likelihood method 

is also quite straightforward. As before we argue conditionally upon the 

margins. Fig. 19.4 shows the total number of subjects exposed, Ni, and the 
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(1) 

Controls 

(2) 

Case Ni 

(3) 

E+ 4 K (a) 

E— 3 (fio )3K (b) 

E+ 3 3(fl0)2^i K (c) 

E— 2 3(fi0 )2K (d) 

E+ 2 3ffofli A (e) 

E— 1 3fi0 K (f) 

E+ 1 fii K (g) 

E- 0 K 00 

Fig. 19.4. Probabilities for 1:3 sets. 

probability of each configuration, again writing K for the common factor, 

in this case 

K = 
(1 + O0)3(l + fil) 

Note that the probabilities for configurations (c) to (f) are multiplied by 3 

because each of these represents three paths in the complete tree. Now there 

are 5 possible values for the total number of subjects exposed. Again there 

are two concordant configurations in which the number of subjects exposed 

uniquely determines the configuration. N\ = 4 ensures configuration (a) 

and N\ = 0 ensures configuration (h). These make no contribution to the 

log likelihood. Each of the other three values of N\ allows for two possible 

configurations, one in which the case is exposed and the other in which the 

case is unexposed. It is the splits of the observed data between these that 

yield the likelihood. 

If the total number of exposed subjects in the set, N\, is fixed at 3, then 

the exposure configuration must be either (b) or (c) and the conditional 
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Table 19.3. Splits of case-control sets 

IVi Split Odds Observed 
3 (c):(b) 3 9 3:4 
2 (e):(d) 9 4:12 
1 (g):(f) 9/3 1:10 

odds for the split (c):(b) is 

3(Q0 )2)^K 3Qi 

(n0 )3k n0 ~ 

Similarly, Ni — 2 implies (d) or (e) and Ni = 0 implies (f) or (g). The odds 

predicted by the model for these splits are set out in Table 19.3, together 

with the observed frequencies. By eye we can see that a value of 9 of about 

0.3 predicts the observed splits very well indeed. More formally, the log 
likelihood is 

I*08 (I) - u^ (1+ 5) 
+ 4 log (9) — 16 log (1 + 0) 

+ 3 log (39) — 7 log (1 + 3$). 

There is no simple expression for the maximum likelihood estimate and 

it is necessary to use a computer program to search for the maximum. 

This occurs at 9 = 0.31 (log(0) = -1.18). The plot of the log likelihood 

ratio against log($) is shown in Fig. 19.5. A Gaussian approximation with 
S = 0.404 fits quite closely. 

The generalization of this argument to any number of controls per case 

may be carried out algebraically or by extending our tree. For sets of 

iVi exposed subjects and IVo unexposed subjects, the constant odds ratio 

model predicts that sets will split between those with an exposed case and 
those with an unexposed case with odds 

Ntf/No. 

A similar generalization is possible for several cases in each set. We will 

not give the details here, but computer software is readily available. Such 

analyses do not arise frequently in practice. An exception is family studies 

in which more than one sibling may be affected by a disease and unaffected 
siblings are used as controls. 

In the examples discussed in this chapter, the Mantel-Haenszel and like¬ 

lihood methods agree closely. The calculations for the former are rather 

easier, but the advantage of the likelihood approach lies in its greater gen¬ 

erality and possibilities for extension. For example, when there are more 
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than two exposure categories, there is no simple method analogous to the 

Mantel-Haenszel approach. We shall defer discussion of such extensions to 

Part II of the book. 

Solutions to the exercises 

19.1 In the order in which the exposure configurations are listed in the 

figure, their frequencies are 26, 7, 15, and 37. 

19.2 In the same order as listed, 

Q R u V 

0 0 0 0 
0 1/2 -1/2 1/4 

1/2 0 1/2 1/4 

0 0 0 0 

Only the second and third configurations contribute to Q, R, U, and V. 

Q = 15 x (1/2) 

R = 7 x (1/2) 

U = 15 x (1/2)-7 x (1/2) = 4 

19.3 



SOLUTIONS 195 

v = 15 x (1/4) + 7 x (1/4) = 5.5 

The odds ratio estimate is 15/7 = 2.14. This estimates the underlying 

rate ratio, so that the suggestion is that tonsillectomy doubles the rate of 
Hodgkin’s disease. Using the expression 

the 90% error factor for the odds ratio is exp( 1.645 x 0.4577) = 2.12. The 

90% confidence limits are, therefore, 2.14/2.12 = 1.01 (lower limit) and 

2.14 x 2.12 = 4.54 (upper limit). Referring the value (U)2/V = 2.91 to the 
chi-squared distribution gives p fa 0.09. 

19.4 If the matching is ignored, the following 2x2 table is obtained: 

History: Positive Negative 

Cases 41 44 

Controls 33 52 

The odds ratio in this table is (41 x 52)/(33 x 44) = 1.47, as compared to 

the value of 2.14 obtained by the correct analysis. 

19.5 The most likely value is 15/7 = 2.14. To calculate the approximate 

90% interval using Gaussian approximation of the log likelihood for log($) 
we use 

the same as we obtained with the Mantel-Haenszel method. Under the null 

hypothesis, the probability for the split is 0.5 so that the expected number 

of sets with an exposed case is 22 x 0.5 = 11. The score and score variance 
are 

U = 15-11 = 4, 

V = 22 x 0.5 x 0.5 = 5.5. 

Again these are the values we obtained using the Mantel-Haenszel method. 

19.6 In the order listed in the figure, the 8 exposure configurations have 

frequencies 1, 4, 3, 12, 4, 10, 1, 11. 

19.7 The contributions to Q, R, U and V are shown below: 
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Number 

of sets Q R U V 

(a) 1 0 0 0 0 

(b) 4 0 3/4 -3/4 -A48 
(c) 3 1/4 0 1/4 '9/48 

(d) 12 0 2/4 -2/4 12/48 

(e) 4 2/4 0 2/4 12/48 

(f) 10 0 1/4 -1/4 9/48 

(g) 1 3/4 0 3/4 9/48 

GO 11 0 0 0 0 

Total 14/4 46/4 -32/4 354/48 

Note that each contribution has to be multiplied by the number of times 

it occurred so that, for example, the total value of Q is 

(3 x 1/4) + (4 x 2/4) + (1 x 3/4) - 14/4. 

The Mantel-Haenszel estimate of 9 is 14/46 = 0.30 and the chi-squared 

test is (U)2/V = 8.68 (p < 0.01). An approximate error factor can be 

calculated from 

exp 2.02 

so that the 90% confidence interval lies from 9 = 0.15 to 9 = 0.60. 
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Tests for trend 

Up to this point we have dealt exclusively with comparisons of exposed and 

unexposed groups. Although it is possible that the action of an exposure is 

all or nothing’, coming into play only when a threshold dose is exceeded, 

it is more common to find a dose-response relationship, with increasing 

dose leading to increasing disease rates throughout the range of exposure. 

This chapter introduces analyses which take account of the level or dose of 
exposure. 

20.1 Dose-response models for cohort studies 

The simplest model for dose-response relationship assumes that the effect 
of a one-unit increase in dose is to multiply the rate (or odds) by <9, where 

0 is constant across the entire range of exposure. Thus the effect of each 

increment of dose on the log rate or odds is to add an amount (3 = log(/9). 

This model is called the log-linear model and is illustrated in Fig. 20.1. The 

dose level is denoted by z. The rate at dose 2 = 0 is given by log(A0) = a, 

at z = 1 by log(Ai) = & + (3, at z = 2 by log(A2) = ot + 2/3, and so on. 

In principle, log-linear models present no new problems. The model 

describes the rate at different doses z in terms of two parameters a and 

(3. The first of these describes the log rate in unexposed persons and will 

normally be a nuisance parameter; the second is the parameter (3, which 

describes the effect of increasing exposure. The contribution to the log 

likelihood from Dz events in Yz person-years of observation at dose z is 

Dz log(Az) - YZXZ 

and the total log likelihood is the sum of such terms over all levels of 

exposure observed. This is a function of both a and (3 but, as before, we 

can obtain a profile likelihood for the parameter of interest, (3, by replacing 

a by its most likely value for each value of (3. This profile likelihood is 
given by the expression: 

where both summations are over dose levels z. Exactly the same log likeli- 
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log (Rate) 

a 

0 1 2 3 

Dose, 2 

Fig. 20.1. Log-linear trend. 

hood is obtained using the retrospective conditional argument based on the 

probability that the cases split between exposure categories in the ratios 

observed. 
To find the most likely value of the parameter f3 requires computer 

programs for Poisson regression, whose use will be discussed in Part II. 

However, the likelihood can be used to obtain some simpler analytical 

procedures. Most importantly, a statistical test for the significance of a 

dose-response effect can be derived by calculating the gradient of the log 

likelihood at (3 = 0. This leads to the score 

where summation is over exposure doses 2 and, as usual, D = ^DZ. The 

first term within the brackets is the mean exposure for cases, while the 

second is the mean exposure in the entire cohort, using the person-time 

observation as weights. The weighting ensures that a subject observed for 

twice as long contributes twice as much to the mean; this is necessary since 

he or she has twice the chance of becoming a case. 

Denoting means of z by 2, the score may be written 

U — D (-^Cases ^Cohort) • 

The score variance, obtained from the curvature of the log likelihood curve 
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Table 20.1. Observed and expected deaths from bladder cancer in work¬ 
ers in the nuclear industry 

Dose code, z 0 1 2 3 4 5 6 
Dose (mSv): < 10 10- 20- 50- 100- 200- > 400 
Observed, Dz 3 2 1 1 3 2 2 
Expected, Ez 6.2 1.0 2.2 1.8 1.5 1.0 0.4 

at (3 = 0, is 

V = D 
fEnCO2 
L En (-^Cohort) 

This expression is D times the variance of the exposure doses z within the 

cohort (again weighting by person-time of observation). The calculation of 

weighted means and variances is easily carried out on scientific calculators 
which include special keys for these operations. 

The same argument applies in the construction of tests for trend in 

SMR’s except that instead of the person-time Yz we now use Ez, the ex¬ 

pected numbers of events obtained by application of age-specific reference 
rates. The use of this test is illustrated in the following example. 

RADIATION AND BLADDER CANCER 

Table 20.1 shows observed deaths from carcinoma of the bladder in a cohort 

of radiation workers, classified according to the radiation dose received. 

Also shown are the numbers of deaths expected in each category on the 

basis of England and Wales rates.* The mean dose code for the bladder 
cancer cases is: 

3x0 + 2xl + lx2 + ... + 2x6 

14 “ 2’93 

The expected mean is obtained by using the expected numbers of cases as 

weights, is 

6.2 x 0 + 1.0 x 1 + 2.2 x 2 + ... + 0.4 x 6 

14T 
1.72 

so the score is 

U = 14(2.93 - 1.72) = 16.9. 

The weighted variance of the dose may be calculated using the appropriate 

calculator key, or from 

6.2 x (0)2 + 1.0 x (l)2 + 2.2 x (2)2 + . ■. + 0.4 x (6)2 _ (l ?2)2 = g 31 

From Smith, P.G. and Douglas, A.J. (1986) British Medical Journal, 293, 845-854. 
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so the score variance is V = 14 x 3.31 = 46.4. The score test is therefore 

(16.9)2/46.4 = 6.16, which corresponds to a p-value of 0.013. Although in 

this example, radiation dose was grouped into a few discrete categories, this 

is not a requirement of the analysis. Dose could be recorded more exactly 

so that no two individuals share the same dose. Observed and expected 

mean doses are calculated in the same way. 

When the exposure dose is roughly normally distributed within cases, 

the log likelihood is nearly quadratic and an approximation to the most 

likely value of (3 is provided by 

U Mean dose (cases) — Mean dose (cohort) 

V Variance of dose (cohort) 

The standard deviation of this estimate is approximately yf\/V. 

Exercise 20.1. (a) Calculate a rough estimate of (3 for the bladder cancer data. 

(The maximum likelihood estimate is 0.328.) 

(b) What is the interpretation of (31 How may the effect be expressed in terms 

of rate ratios? 

(c) How would the interpretation of the analysis be changed if the calculations 

had been carried out using the actual radiation dose as z rather than the 0-6 

code? 

20.2 Stratified analysis of cohort data 

The extension of these ideas to stratified analysis involves only a slight 

extension of the model. Use of either a profile or conditional approach 

leads to a log likelihood function for (3 which is simply a sum over strata of 

contributions of the same form as in the previous section. In consequence, 

the score and score variances at (3 = 0 are simply sums of contributions 

from each stratum: 

and 

u = Ylut 

— ^ ] D (^Cases — ^Cohort) > 

ENERGY INTAKE AND IHD 

An example of the use of this method is shown in Table 20.2. The table 

is calculated from the same data on energy intake and ischaemic heart 

disease which has been encountered in previous chapters, and compares 

observed and expected mean energy intake of heart disease cases. The 

study cohort was drawn from three rather different occupational groups, 

bank workers, London bus drivers, and London bus conductors. To control 
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Table 20.2. Mean energy intake (kcal/day) of IHD cases 

Bank staff Drivers Conductors 
Age Obs. Exp. Obs. Exp. Obs. Exp. 
40-49 2769 3015 2918 2853 _ _ 

(4) (2) (0) 

50-59 2514 2894 2808 2838 2515 2845 

(8) (4) (5) 

60-69 2725 2846 2458 2833 2718 2828 

(7) (6) (9) 

for confounding by age and occupation, 9 strata are required. Table 20.2 

shows the comparisons of means for the 9 strata formed by crossing the 

three occupational groups by three age bands. The numbers of cases are 
shown in parentheses. 

The most striking feature of this table is the consistency of the finding 

that energy intake is lower in cases than would be expected under the null 

hypothesis. This is confirmed by the overall significance test for which 

U = 4 x (2769 - 3015) +••• + 9 x (2 718 - 2 828) 

= -9 765 

V = 8 446 000, 

so that the score test is (—9 765)2/8 446 000 = 11.29 and p < 0.001 (detailed 

workings for V are not shown). 
The use of U and V to obtain a rough estimate of (3 is exactly the same 

as in the unstratified case. 

Exercise 20.2. Calculate an approximate estimate of /3 for the energy intake 

data, using the values of U, V given above. Calculate the change in log rate 

predicted for a 500 kcal change in energy intake and express this as a rate ratio. 

20.3 Dose-response relationships in case-control studies 

The extension of these methods to deal with case-control studies requires 

only the change to an appropriate likelihood. In Chapter 17 we showed 

that this is the likelihood based upon the split of the Nz subjects observed 

with exposure level z as Dz cases and Hz controls. If the odds predicted 

by the model for such a split are u>z, the log likelihood is 

^ [Dz log(wz) - Nz log( 1 + uz)\. 

The idea that the rate ratio for each dose increment is constant translates, 

in the case-control study, to a constant odds ratio for each one unit change 
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Table 20.3. Screening histories in breast cancer deaths and controls 

Negative screens 

0 1 2 3 Total 

Cases 29 22 3 3 

Controls 99 122 40 24 285 

Subjects 128 144 43 27 442 

in dose. Thus the model for the log odds takes the same form as Fig. 20.1: 

log(otz) = a + 0z. 

This is a logistic regression model. Computer programs for estimating 0 

are widely available and their use will be discussed in Part II, but a score 

test of the null hypothesis 0 = 0 requires only simple tabulations and a 

hand calculator. The nuisance parameter, a, is removed either by a profile 

likelihood approach, or by a conditional argument leading to the hyperge¬ 

ometric likelihood. In either case, the score test given by the gradient of 

the log likelihood curve turns out to be: 

U 
DH 

~w 

DH 

fJ2Dzz _ EHzz\ 

V D H )■ 

(ACases — -^Controls) 

The score variance is obtained from the curvature of the log likelihood 

and, as in section 17.3, the profile and the conditional approaches lead to 

slightly different expressions. For the conditional approach, 

DHY,Nz(zY-N{zY 

N (N — 1) 

where z is the overall mean dose (J2 Nzz)/N. Apart from the factor DH/N, 
this is the usual estimate of the variance of dose in the study when cases 
and controls are combined. The profile likelihood argument leads to the 
same expression, but with (N — 1) replaced by N. 

Exercise 20.3. In Chapter 19, a case control study of the efficacy of a ra¬ 

diographic breast cancer screening programme was discussed. Table 20.3 shows 

data drawn from a similar study concerning the number of times women had 

been screened (with negative result).1' 

(a) By calculating case/control ratios, examine the data for evidence of decreas¬ 

ing risk with increasing numbers of negative screens. 

(b) The mean number of screens for cases is 0.649, and for controls is 0.961. The 

tFrom Palli, D. et al. (1986) International Journal of Epidemiology, 38, 501-504. 
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overall variance of the number of screens is 0.810. Calculate the score and score 

variance and the corresponding chi-squared value. 

Extension of these results to stratified and matched case-control studies 

follows along familiar lines. Each stratum (or case-control set) provides its 

own contribution to the score: 

TTi _ U n (~t _ -1 \ 
U Nt \ Cases ^Controls! * 

The overall score is the sum of these contributions and the score variance 

(using the hypergeometric conditional argument) is the sum contributions: 

, DIH‘T.,Ntz(z)1-N‘(zt)2 

N‘ N‘ - 1 

This stratified version of the score test for (3 = 0 is often called the Mantel 

extension test. 
Under the log-linear model, if the dose is normally distributed in con¬ 

trols then it will also be normally distributed in cases, but with a different 

mean value. In those circumstances, an estimate of (3 will be provided by 

U/V as in earlier sections. 
When there are only two dose levels (z = 0 and z = 1), it can be shown 

that the tests set out in this chapter are identical to those discussed in 
previous chapters. It follows from this equivalence that all the score tests 
discussed in this book may be thought of as comparisons of mean exposures. 
This insight makes possible the use of standard computer programs for 
summary tabulations of large bodies of data. This is particularly valuable 
for preliminary analysis and for demonstrating the consistency of a finding 

over subgroups. 

Exercise 20.4. If you are undeterred by algebra, you might like to try and prove 

this equivalence. 

Solutions to the exercises 

20.1 The rough estimate of (3 is 16.9/46.4 = 0.36. This is the log of the 

rate ratio for one unit change in dose score. The rate ratio is exp 0.36 = 1.4. 

The dose code is constructed so that one unit change in 2 represents a 

doubling of the radiation dose, so that the approximately fitted model 

suggests that doubling the radiation dose multiplies the bladder cancer rate 

by approximately 1.4. If the analysis had been carried out by calculating 

means of radiation dose itself rather than mean dose code, the implied 

model would have been rather different — that the addition of a given 

radiation dose would multiply the rate by some constant amount. 

20.2 The rough estimate of (3 is —9 765/8 446000 = —1.16 x 10 3. This 
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is the change in the log rate for one unit change in energy intake. For 

500 kcal change, the change in log rate is —1.16 x 10-3 x 500 = —0.58. 

This corresponds to a rate ratio of exp —0.58 = 0.56. The study therefore 

indicates that an increase of 500 kcal in daily energy.*ifttake is associated 

with an approximate halving of the incidence rate of IHD. 

20.3 The case/control ratios for 0, 1, 2 and 3 previous negative screens are 

0.29, 0.18, 0.08 and 0.13 respectively, suggesting that mortality rates from 

breast cancer fall with increasing numbers of previous negative screens. 

The score is 

U = 57;~5 (0.649 - 0.961) = -14.82 

and the score, variance is 

V = 
57 x 285 

342 
x 0.810 = 38.47, 

so that the score test is (—14.82)2/38.47 = 5.71, corresponding to a p- 

value of 0.017. The use of this test in this case is debatable, since it is 

not by any means clear that a simple linear or log-linear dose-response 

relationship should apply. The true relationship between screening history 

and subsequent mortality depends in a complex way upon the sensitivity of 

the test, the speed of growth of tumours, the relationship between prognosis 

and tumour stage at start of treatment, together with the time interval 

between screens. Most of the evidence for trend comes from the higher 

case/control ratios in the never screened group, rather than from a gradient 

with increasing number of screens. We must be careful not to interpret a 

significant trend test as indicating evidence for dose-response as such. 

20.4 For cohort studies, the equivalence follows from the fact that ^Cases 

is the proportion of cases exposed, Di/D. Similarly ^Cohort is the pro¬ 
portion of person-time exposed, Y\/Y. The variance of a binary 2 in the 

cohort is 
n (YA2 Y0Y1 

y \yJ (y)2 

and substitution of these expressions into the formulas given in section 20.1 

gives the same test as Chapter 13. 

For case-control studies, the means of z in cases and in controls are the 

corresponding proportions exposed, D\/D and H\/H. The variance of z 

in the study is 
N\ - N{N1/N)2 NqN\ 

AT- 1 ~ N(N - 1)' 

Substitution of these values into the formulas of section 20.3 gives the test 

discussed in Chapter 17. 
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The size of investigations 

Before embarking on an epidemiological study, it is important to ensure 

that the study will be large enough to answer the questions it addresses. 

Calculation of the required study size is often regarded as rather difficult, 
but in fact requires no new methods. 

The problem is usually presented as if the scientist comes to the statis¬ 
tician with a clearly formulated hypothesis and the simple question ‘How 

large should my study be?’. This is rarely the case. More usually the in¬ 

vestigator has a very clear idea of the size of study proposed, this being 

determined by budgetary and logistic constraints, and requires an answer 

to the question ‘Is my proposed study large enough?’. All too often cal¬ 

culations show the answer to be no! The investigator then needs to know 
how much larger the study needs to be. 

This chapter will address the problem of study size from this standpoint. 

In addition to being more realistic, it follows more naturally from earlier 

chapters since the first stage of the calculation is to guess the results of 

the proposed study and analyse these. It will be convenient to develop 

the argument in the simplest case — the comparison of incidence in a 

cohort with that in a standard reference population. Generalization to 

other study designs is straightforward and will be discussed towards the 

end of the chapter. 

21.1 The anticipated result 

In order to answer the question ‘Is my proposed study large enough?’, we 

need to put ourselves in the position of having carried it out. To do this, it 

will be necessary to make some guesses about how things will turn out. A 

careful calculation of study size may involve a range of guesses. The most 

important thing to guess is the size of the effect of primary interest. 
We shall take as an example a cohort study to investigate an occupa¬ 

tional risk of lung cancer. In the proposed study, a cohort of industrial 
workers will be traced, and all deaths from lung cancer counted. This 
number will be compared with the expected number of deaths obtained by 
applying national age- and period-specific mortality rates to the table of 
person-time observation for the cohort. The first stage of the calculation 
will be to guess this person-time table, allowing for mortality in the cohort. 
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Let us assume that this has been done and that it leads to an expected 
number of lung cancer deaths of E = 12.5. 

Exercise 21.1. What is the anticipated outcome of the study when 9, the rate 
ratio parameter for occupational exposure, is (a) 1.4, (b) l_£\(c) 2.0, and (d) 5.0. 
In each case calculate the logarithm of 9 and calculate the anticipated standard 
deviation for the log SMR (which estimates log(9)). Is the study large enough to 
detect these rate ratios? 

It is clear that the study would not be large enough to detect a rate ratio 

of 1.4, since the anticipated result would yield a 90% confidence interval 

which includes the null hypothesis 9=1 (log(0) = 0). It should be equally 

clear that the study will almost certainly detect a rate ratio of 5, since in 

that case the size of effect is very large in comparison with its standard 

deviation. The two intermediate values for 9 are more problematic and in 

such cases it is useful to further quantify the chances that the study will 

detect the effect. 

21.2 Power 

The power of a study is defined as the probability that it will yield a 
significant result when the true size of effect is as specified. The power is 
different for each size of effect considered, being greater for larger effects. 
Thus the power of a study is not a single number, but a whole range of 
values. The plot of power against size of effect is called a power curve. 
Two such curves for studies of different sizes are illustrated in Fig. 21.1. In 
practice it is rare for the entire power curve to be presented; more usually 
a few points in the range of effects are tabulated. 

Exercise 21.2. Which curve corresponds to the larger study? 

A significant result is defined as a result where the p-value for the null 

hypothesis is below a specified threshold (the significance level). Alterna¬ 

tively (and equivalently) it may be thought of as a result in which the null 

hypothesis falls outside a specified confidence interval. To calculate the 

power, it will be necessary to specify the significance (confidence) level to 

be used to categorize the result as significant. A study will have a higher 

power to detect a finding at the 5% level of statistical significance (95% 

confidence) than at the 1% level (99% confidence). 

21.3 Calculating the power 

It has already been stated that study size calculations require some guess¬ 

work. There is therefore little point in calculating power to a high order of 

accuracy. In this section we outline approximate power calculations which 

are accurate enough for all practical purposes. 

Fig. 21.2 sets out our notation. The study aims to estimate an effect 
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Effect parameter 

Fig. 21.1. Power curves for two studies. 
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Fig. 21.2. Calculating the power of a study. 
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parameter, (3* and we assume that the log likelihood may be approximated 

by a Gaussian log likelihood with standard deviation S. To simplify nota¬ 

tion, we also assume that the point (3 — 0 represents the null hypothesis 

(no effect). For example, (3 may be the log of a rate^tio or odds ratio. 

We wish to calculate the probability that the study will detect an effect of 

size (3 — b. 
The lower part of the figure shows the anticipated result of the study. 

The black disc indicafes the expected effect and the lines to either side 

indicate the expected confidence interval which would be calculated. The 

result will be taken as significant if the entire confidence interval lies to 

the right of the null hypothesis. The width of the interval depends upon 

the standard deviation S, and this in turn depends upon the size of the 

study. The interval also depends upon the significance or confidence level 

chosen. For example, for a 5% significance level we use the 95% confidence 

interval, which extends 1.96 standard deviations either side of the estimate, 

so c = 1.96. 
If the expected value of the lower confidence limit lies above (3 — 0, 

the study would be expected to yield a positive result. However, it is not 

guaranteed to do so. If we imagine the study being repeated, the estimates 

obtained will vary from occasion to occasion. These estimates are indicated 

on the diagram by open circles. 
The variation of estimates around the expected value is approximately 

Gaussian with standard deviation S. Ignoring the slight dependence of S 
upon the estimated value, the lower confidence limit will also vary around 
its expected value according to a Gaussian distribution with standard de¬ 
viation S. The power of the study is the probability that this lower bound 
falls above zero. This depends upon the number of standard deviations 
between zero and the expected position of the lower bound. Referring to 
this number as d, the probability that the lower limit is above zero is then 
given by the probability that an observation in a standard Gaussian dis¬ 
tribution exceeds —d. For example, if d = 1.645, the power is 0.95. When 
the expected location of the lower confidence limit is exactly at the null 
hypothesis, so that d = 0, the power is 0.50 and there is an even chance 
of obtaining a significant result. When the expected position is below zero 
d < 0, the power is less than 0.50. (Tables of the standard Gaussian dis¬ 
tribution are widely available and are not included in this book.) 

Exercise 21.3. For the study discussed in Exercise 21.1, calculate d for each 

value of the log rate ratio, assuming that a 5% significance level will be used (i.e. 

c = 1.96). Using tables of the Gaussian distribution, obtain the power in each 

case. 

*We use this letter as it is the usual symbol for an effect parameter in regression 
models. It should not be confused with the ‘type II error probability’, for which it 
stands in some texts. 
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Table 21.1. Choice of c and d 

Significance c Power d 
0.10 1.645 0.95 1.645 
0.05 1.960 0.90 1.282 
0.01 2.576 0.75 0.674 

21.4 Increasing the power 

If the results of the power calculations are disappointing, it will be necessary 

to increase the study size in some way. In this section we show how to 

determine by how much the study size must be increased to achieve the 
desired power. 

Predetermining the significance level fixes the value of c. Similarly, 

predetermining the power fixes d. Since we require the distance (c + d)S to 

equal the expected effect, b, we must choose the size of the study so that 

c + d 

Table 21.1 lists some common requirements for significance and power. 
Note that, in each row of the Table, (c + d) is between 3.2 and 3.3 so that 
these choices of significance and power suggest designing the study so that 
the expected effect, 6, is just over 3 standard deviations. 

Exercise 21.4. Calculate the value of the S which must be achieved if there were 

to be a power of 0.90 to detect a rate ratio 9 = 1.7 at the p = 0.05 significance 

level. 

If the value of S required to achieve the desired power is smaller than that 

we expected to achieve with the study as originally proposed, then the 

study size must be increased. In general the factor by which the study size 

must be increased is 

Current value of S 

Required value of S 

Exercise 21.5. Carrying on from the previous exercise, by what factor must 

the study be increased to achieve the required power? How could this be done 

in practice? 

21.5 Application to other study designs 

The extension of the above argument to different study designs introduces 

no serious new problems, although the first stage of the process — calcu¬ 

lating the expected study result — may be more difficult. 
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COHORT STUDIES 

When comparing exposed and unexposed groups in a cohort study, the 

standard deviation of the estimate of log 9 is 

Vv, 

In order to predict the value of S, we need to be able to predict the values of 

D0 and D\. This can be done by using the total person-time of observation 

in the proposed cohort study, Y, and a guess for the disease rate in this 

population, A. The total number of events we expect to observe is given by 

D = XY. 

If the proportion of the study cohort who will have been exposed is P, 

the person-time observed in the exposed and unexposed groups will be 

approximately PY and (1 — P)Y respectively. When the anticipated rate 

ratio is 9, the odds that a case was exposed will be 

n PY -g P 
(1 — P)Y 1 -P’ 

and it follows that the D cases we anticipate are expected to split between 

exposed and unexposed as 

Dl = D 
9P 

1 - P + 0P’ 
D0 = D- 

1 - P 

-P + 9P' 

The expected value of S for the estimated log rate ratio can then be cal¬ 
culated and the power calculated as before. 

Exercise 21.6. You plan a cohort study of ischaemic heart disease in middle- 

aged men. The proposed size of the cohort is 10 000 men and a 5-year follow up 

period is envisaged. The estimated incidence rate in the study population is 10 

per thousand person-years. What is the power of the study to detect a rate ratio 

of 1.5 for a risk factor to which 10% of the population is exposed? 

CASE CONTROL STUDIES 

Similar calculations are involved in the calculation of the power of a case 

control study. If it is planned to study D cases and H controls, and if the 

proportion of the population thought to be exposed to the factor of interest 

is P, we would expect the D cases to split between exposed and unexposed 

groups as above, and we expect the H controls to split as 

Hx = PH, Hq = {1- P)H. 
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We are then in a position to calculate the expected standard deviation for 

the log odds ratio estimate, by the usual formula: 

n t i r 
“ V Do + D, + Ho + Hx • 

The calculation of the power follows as before. 

Exercise 21.7. What is the power of a study of 100 cases and 200 controls to 

detect an odds ratio of 2.0 for an exposure present in 25% of the population? 

STRATIFICATION AND MATCHING 

Extension of these ideas to allow for stratification is straightforward in 

principle. In practice the difficulty is that the standard deviation of the 

effect of interest depends in a rather complicated way upon the strength of 

relationship between the exposure of interest and the stratifying variable(s). 

The same is true of matched case-control studies. It is particularly easy to 

see the difficulty in the case of the 1:1 design, since only case-control pairs 

which are discordant in exposure status contribute to the estimation of 

exposure effect. In such cases it will often be necessary to carry out a small 

pilot study, to provide estimates of the quantities necessary to calculate 

power. 

DOSE-RESPONSE RELATIONSHIPS 

If the level of exposure is graded, the log-linear model described in Chap¬ 

ter 20 allows an anticipated slope of a dose-response curve to be translated 

into a predicted increase in mean exposure of cases. If the standard de¬ 

viation of the level of exposure in the study group is known, sample size 

calculations are then straightforward. 

Solutions to the exercises 

21.1 The anticipated number of deaths will be D = 9E and the corre¬ 

sponding standard deviation for the estimate of log 9 will be 

AT 

V D' 

For our four values of 9, 

9 1.4 1.7 2.0 5.0 

D 17.5 21.25 25.0 62.5 

log{9) 0.336 0.531 0.693 1.609 

S (estimated) 0.239 0.217 0.200 0.126 
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21.2 The larger study would correspond to the inner curve. For any size 

of effect, this curve predicts a higher probability of obtaining a significant 
result. 

21.3 In each case, dS is obtained by subtracting l^S” from the value of 
log(#). Thus, d is obtained by dividing this difference by S: 

9 d Power 
1.4 (0.336 - 1.96 x 0.239)/0.239 = -0.55 0.29 
1.7 (0.531 - 1.96 x 0.217)/0.217 = 0.49 0.69 
2.0 (0.693 - 1.96 x 0.200)/0.200 = 1.51 0.93 
5.0 (1.609 - 1.96 x 0.126)/0.126 = 10.81 1.00 

There is a slight chance of detecting a rate ratio of 9 = 1.4, quite a good 

chance for 0 — 1.7, a very good chance at 9 = 2.0 and the probability of 

failing to obtain a significant result at 9 = 5.0 is negligible. 

21.4 The expected result at 9 = 1.7 is b — 0.531. By reference to Ta¬ 

ble 21.1 we see that c = 1.960 and d = 1.282 so that we need the standard 
deviation for the effect estimate to be: 

S = 
0.531 

1.960 + 1.282 
0.164. 

21.5 The current standard deviation is 0.217 and it must be reduced to 

0.164. The study must therefore be scaled up by a factor of 

/ 0.217 \ 2 

\0.164 ) 
1.75. 

The study must be increased so as to yield 75% more deaths. This can 

be achieved in practice either by increasing the size of the cohort or by 
extending the follow-up period. 

21.6 The proposed study would accumulate 5 x 10 000 = 50 000 person- 

years of observations. At the anticipated incidence rate we would expect to 

observe D = 10 x 50 = 500 disease events. If a proportion P = 0.1 of the 

total person-time is of exposed subjects and (1 - P) = 0.9 is of unexposed 

subjects, and if the rate ratio is 9 = 1.5, the expected number of exposed 
and unexposed cases is 

D i 

D0 

500 x 

71.4 

500 x 

1.5 x 0.1 

0.9+ 1.5 x 0.1 

0.9 

0.9 + 1.5 x 0.1 
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= 428.6 

The expected standard deviation for log(0) is 

s = + i£r0-128 

and b = log(1.5) = 0.405. Thus, the number of standard deviations between 
expected result and null hypothesis, (c + d), is 0.405/0.128 = 3.164. For 
a 5% significance level, c = 1.960 so that d = 3.164 - 1.960 = 1.204. 
The power is the probability of exceeding -1.204 in a standard Gaussian 
distribution, given by tables as 0.885. The study has slightly less than 90% 
power to detect a rate ratio of 1.5. 

21.7 Since the exposure is present in 25% of the population, we would 
expect the 200 controls to split as Hi = 50 exposed, and H0 = 150 unex¬ 
posed. For 9 = 2.0, the expected split of the 100 cases is 

Dy 

D0 

The expected standard deviation of the estimate of log($) is 

/1 1 1 1 
\ - + “t" ~~r “h ~— 

V 50 150 40 60 

and b = log(2.0) = 0.693. The number of standard deviations between 
expected result and null hypothesis is 2.65. If a 5% significance level is to 
be used, d = 2.65 — 1.96 = 0.69. By referring —0.69 to the table of the 
standard Gaussian distribution, the power is 0.755 — just over 75%. 

100 x 
2.0 x 0.25 

0.75 + 2.0 x 0.25 
- 40, 

= 60. 
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Introduction to regression models 

One of the main problems discussed in Part I was how to compare two 

rate parameters, Ao and Ai, using their ratio Ai/A0. To do this the log 

likelihood for the parameters A0 and Ax was re-expressed in terms of A0 

and 9, where 9 = Ax/Ao. This technique was then extended to deal with 

comparisons stratified by a confounding variable by making the assumption 

that the parameter 9 was constant over strata. In this second part of the 

book, the technique will be further extended to deal with the joint effects 

of several exposures and to take account of several confounding variables. 

A common theme in all these situations is a change from the original 

parameters to new parameters which are more relevant to the comparisons 

of interest. This change can be described by the equations which express 

the old parameters in terms of the new parameters. These equations are 

referred to as regression equations, and the statistical model is called a 

regression model. To introduce regression models we shall first express 

some of the comparisons discussed in Part I in these terms. We use models 

for the rate parameter for illustration, but everything applies equally to 

models for the odds parameter. 

22.1 The comparison of two or more exposure groups 

When comparing two rate parameters, Ao and Ax, the regression equations 

which relate the original parameters to the new ones are 

Ao = Ao, Ax = Ao 9, 

where the first of these simply states that the parameter Ao is unchanged. 

When there are three groups defined by an exposure variable with three 

levels, corresponding (for example) to no exposure, moderate exposure, and 

heavy exposure, the original parameters are Ao, Ax, and A2, and there are 

now more ways of choosing new parameters. The most common choice is 

to change to 

Ao, #i=Ai/Ao, &2 — A2/Ao • 

With this choice of parameters the moderate and heavy exposure groups 
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Table 22.1. A regression model to compare rates by exposure levels 

Exposure 

Age 0 1 

0 a£ 0
0

 

1 

2 
A£ 

A^ 

\l» 

a le 

are compared to the unexposed group. The regression equations are now 

Ao = Ao, Ai = Ao#i, A2 = Ao#2- 

22.2 Stratified comparisons 

When the comparison between exposure groups is stratified by a confound¬ 

ing variable such as age the change to new parameters is first made sepa¬ 

rately for each age band; for two exposure groups the regression equations 

for age band t are 
\t   \t \t   \t at 
A0 — A0 A1 — A(W • 

The parameter 9t is age-specific and to impose the constraint that it is 

constant over age bands it is set equal to the constant value 9, in each age 

band. The regression equations are now 

Ao = Aq Al = A19. 

This choice of parameters is the same as for the proportional hazards model, 

introduced in Chapter 15. The model is written out in full in Table 22.1 

for the case of three age bands. 

Although our main interest is whether the rate parameter varies with 

exposure, within age bands, we might also be interested in investigating 

whether it varies with age, within exposure groups. The parameter 9 does 

not help with this second comparison because it has been chosen to compare 

the exposure groups. When making the comparison the other way round 

the age bands are the groups to be compared and the exposure groups 

are the strata. To combine the comparison across these strata requires 

the assumption that the rate ratios which compare levels 1 and 2 of age 

with level 0 are the same in both exposure groups. This way of choosing 

parameters is shown in Table 22.2, where the parameters (f)1 and (j)2 are the 

rate ratios for age, assumed constant within each exposure group. Note 

that there are two parameters for age because there are three age bands 

being compared. 

Putting these two ways of choosing parameters together gives the regres¬ 

sion model shown in Table 22.3. The parameter Aq has now been written 

as Ac, for simplicity and to emphasize that it refers to the (top left-hand) 
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Table 22.2. A regression model to compare rates by age bands 

Exposure 
Age 0 1 

0 A° Ar 
1 A°01 A?0X 
2 Aq02 A\(t)2 

Table 22.3. A regression model for exposure and age 

Exposure 
Age 0 1 

0 Ac Ac# 

1 AC01 AC#0X 

2 Ac02 Ac#02 

corner of the table. Both sorts of comparison can now be made in the same 

analysis. It is no longer necessary to regard one variable as the exposure, 

and the other as a confounder used to define strata; the model treats both 

types of variable symmetrically. To emphasize this symmetry the term ex¬ 

planatory variable is often used to describe both exposures and confounders 

in regression models. Although this is useful in complex situations where 

there are many variables, there are also dangers. Although it makes no 

difference to a computer program whether an explanatory variable is an 

exposure or confounder it makes a great deal of difference to the person 

trying to interpret the results. Perhaps the single most important rea¬ 

son for misinterpreting the results of regression analyses is that regression 

models can be used without the user thinking carefully about the status of 

different explanatory variables. This will be discussed at greater length in 

Chapter 27. 

Exercise 22.1. Table 22.4 shows a set of values for the rate parameters (per 

1000 person-years) which satisfy exactly the model shown in Table 22.3. What 

are the corresponding values of Ac, #, 01,02 ? 

Exercise 22.2. When the model in Table 22.3 is fitted to data it imposes the 

constraint that the rate ratio for exposure is the same in all age bands, and 

equally, that each of the two rate ratios for age is constant over both levels of 

exposure. Is the constraint on the rate ratios for age a new constraint, or does it 

automatically follow whenever the rate ratio for exposure is the same in all age 

bands? 
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Table 22.4. Parameter values (per 1000) which obey the constraints 

Age 

Exposure 

0 1 

0 5.0 15.0 

1 12.0 36.0 

2 30.0 90.0 

Table 22.5. A regression model using names for parameters 

Exposure 

Age 0 1 

0 Corner Corner x Exposure(l) 

1 Corner x Age(l) Corner x Age(l) x Exposure(l) 

2 Corner x Age(2) Corner x Age(l) x Exposure(l) 

22.3 Naming conventions 

Using Greek letters for parameters is convenient when developing the the¬ 

ory but less so when applying the methods in practice. With many ex¬ 

planatory variables there will be many parameters and it is easy to forget 

which letter refers to which parameter. For this reason we shall now move 

to using names for parameters instead of Greek letters. 

The first of the parameters in Table 22.3, Ac, is called the Corner. The 

6 parameter, which is the effect of exposure controlled for age, is referred 

to as Exposure(l); when the exposure variable has three levels there are 

two effects and these are referred to as Exposure(l) and Exposure(2), and 

so on. When the exposure variable is given a more specific name such 

as Alcohol then the effects are referred to as Alcohol(l) and Alcohol(2). 

The (f> parameters, which are the effects of age controlled for exposure, are 

referred to as Age(l) and Age(2). The model in Table 22.3 is written using 

names in Table 22.5. 
Because writing out models in full is rather cumbersome, particularly 

when using names for parameters, we shall use a simple abbreviated form 

instead. The entries in Tables 22.3 and 22.5 refer to the right-hand sides of 

the regression equations; the left-hand sides are the original rate parameters 

which are omitted. Such a set of regression equations is abbreviated to 

Rate = Corner x Exposure x Age. 

It is important to remember that this abbreviation is not itself an equation 

(even though it looks like one!); it represents a set of equations and is 

shorthand for tables like Table 22.5. The regression model is sometimes 
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Table 22.6. Energy intake and IHD incidence rates per 1000 person- 
years 

Exposed Unexposed 

(< 2750 kcals)_(> 2750 kcals) Rate 
Age Cases P-yrs Rate Cases P-yrs Rate ratio 
40-49 2 311.9 6.41 4 607.9 6.58 0.97 
50-59 12 878.1 13.67 5 1272.1 3.93 3.48 
60-69 14 667.5 20.97 8 888.9 9.00 2.33 

Table 22.7. Estimated values of the parameters for the IHD data 

Parameter Estimate 
Corner 0.00444 

Exposure(l) x2.39 

Age(l) xl.14 
Age(2) x2.00 

abbreviated even further and referred to simply as a multiplicative model 
for exposure and age. 

22.4 Estimating the parameters in a regression model 

Table 22.6 shows the data from the study of ischaemic heart disease and 

energy intake. There are two explanatory variables, age with three levels 

and exposure with two. The two levels of exposure refer to energy intakes 

above and below 2750 kcals per day. 

Although the rate ratio for exposure is rather lower in the first age band 

than in the other two age bands, it is based on only 6 cases, and a summary 

based on the assumption of a common rate ratio seems reasonable. In the 

new terminology this means fitting the regression model 

Rate = Corner x Exposure x Age. 

The most likely values of the parameters in this model, obtained from a 

computer program, are shown in Table 22.7. Note that the most likely value 

of the Exposure(l) parameter is the same, to two decimal places, as the 

Mantel-Haenszel estimate of the common rate ratio, given in Chapter 15. 

Exercise 22.3. Use the most likely values of the parameters in the regression 

model, shown in Table 22.7, to predict the rates for the six cells in Table 22.6. 

Computer programs differ in the precise details of how the output is 
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Table 22.8. Estimated parameters and SDs on a log scale 

Parameter Estimate (M) SD (S) 

Corner -5.4180 0.4420 
V. 

Exposure(l) 0.8697 0.3080 

Age(l) 0.1290 0.4753 
Age(2) 0.6920 0.4614 

labelled. In particular you may see the word variable where we have used 

parameter, and the word coefficient where we have used estimate. We have 

used the term corner for the parameter which measures the level of response 

in the first age band of the unexposed group but several other terms are 

in widespread use, for example constant, intercept, grand mean, and (most 

cryptically of all) the number 1. We have numbered strata and exposure 

categories starting from zero, but some programs start numbering from 
one. 

22.5 Gaussian approximations on the log scale 

Gaussian approximations to the likelihood are used to obtain approximate 

confidence intervals for the parameter values. For the simple multiplicative 

models discussed so far the approximation is always made on the log scale, 

and in many programs the output is also in terms of logarithms. Table 22.8 

shows the output on a log scale for the ischaemic heart data; the second 

column shows the most likely values (M) of the logarithms of the param¬ 

eters and exponentials of these give the values on the original scale. For 
example, 

exp(0.8697) = 2.39, 

which is the rate ratio for exposure. The third column shows the standard 

deviations (S) of the estimates, obtained from Gaussian approximations to 

the profile log likelihoods for each parameter. The standard deviation of 

the effect of exposure, on the log scale, is 0.3080, so the error factor for a 

90% confidence interval for this parameter is exp(1.645 x 0.3080) = 1.66, 

and the limits are from 2.39/1.66 = 1.44 to 2.39 x 1.66 = 3.96. 

Exercise 22.4. Use Table 22.8 to calculate the 90% confidence limits for the 

first effect of age. 

When the regression model is fitted on a log scale it is written in the 
form 

log(Rate) = Corner + Exposure + Age. 
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Table 22.9. A more complete description of the age effects 

Parameter Estimate SD 
Age(l) 0.1290 0.4753 
Age(2) 0.6920 0.4614 
Age(2) - Age(l) 0.5630 0.3229 

Table 22.10. An abbreviated table for the age effects 

Parameter Estimate SD 
Age(l) 

Age(2) 
0.1290 

0.6920 
°’4753 0 3229 
0.4614 y 

Strictly speaking, the parameters on the right-hand side of this expression 

should be written as log(Corner) etc., but in practice the log on the left- 

hand side is enough to signal the fact that the parameter estimates will be 
on a log scale. 

For variables with more than two categories, comparisons other than 

those with the first category are sometimes of interest. Taking the variable 

age in the ischaemic heart disease data as an example, the effect of changing 

from level 1 to level 2 of age is the difference between the two age effects, 

namely 0.6920 — 0.1290 = 0.5630. Because the two age effects are based 

on some common data the standard deviation of their difference cannot be 

obtained from the simple formula 

-\/0.47532 + 0.46142 = 0.6624, 

which was used in Chapter 13. To obtain the correct standard deviation 

we usually need to resort to a trick, such as recoding age so that the corner 

parameter refers to the second age band rather than the first. Table 22.9 

shows how a fuller analysis of age effects could be reported; an option to 

obtain output in this form would be a useful feature not currently available 

in most computer programs. 

An abbreviated way of conveying the same information is shown in Ta¬ 

ble 22.10. This provides the standard deviations for all three comparisons 

but leaves the user to do the subtraction to find the effect of changing from 

level 1 to level 2. The method extends naturally for factors with more than 

three levels; for example, a four-level factor would need a triangular array 

of 6 standard deviations for the six possible pairwise comparisons. 
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22.6 Additive models 

When comparing two groups, in the first section of this chapter, the two 

parameters Ao and Ai were replaced by A0 and 9 = Ai/Ao- This change 

of parameters made it possible to estimate the rate ratio 9 along with its 

standard deviation. The parameters could equally well have been changed 

to Ao and 9 = Ai — Ao, thus making it possible to estimate the rate difference 
instead of the rate ratio. 

The choice between the rate ratio and the rate difference is usually an 

empirical one, depending on which of the two is more closely constant over 

strata. In the early years of epidemiology, when age was often the only 

explanatory variable apart from exposure, methods of analysis were all 

based (implicitly) on multiplicative models. This is because most rates vary 

so much with age that the rate ratio is almost always more closely constant 

over age bands than the rate difference. More recently, particularly when 

investigating the joint effects of several exposures, epidemiologists have 
shown a greater interest in rate differences. 

To impose the constraint that the rate difference is constant over age 
strata, the regression model 

Rate = Corner + Exposure + Age 

is fitted. This is called an additive model for exposure and age. Note that 

it is the rate and not the log rate which now appears on the left-hand 

side. The same likelihood techniques are used as with the additive model 

as with the multiplicative model, but because the estimated values of the 

parameters in the additive model must be restricted so that they predict 

positive rates, it is much harder to write foolproof programs to fit these 

models. We shall return to additive models in Chapter 28. 

22.7 Using computer programs 

There is a certain amount of specialized terminology connected with com¬ 

puter programs which we shall introduce briefly in this section. 

VARIABLES AND RECORDS 

The information collected in a study is best viewed as a rectangular table 

in which the columns refer to the different kinds of information collected for 

each subject, and the rows to the different subjects. In computer language 

the columns are called variables and the rows are called records. Variables 

such as age and observation time are called quantitative because they mea¬ 

sure some quantity. Variables such as exposure group are called categorical 

because they record the category into which a subject falls. The different 

categories are called the levels of the variable. Another name for a categor¬ 

ical variable is factor. Categorical variables with only two categories (or 
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levels) are also known as binary variables. 

DERIVED VARIABLES 

The raw data which is collected in a study may not be in exactly the right 

form for analysis. For example, in a follow-up study the observation time 

will usually be recorded as date of entry to the study and date of exit. The 

computer can be instructed to derive the observation time from these two 

dates by subtraction. Another example is where the grouped values of a 

quantitative variable are required in an analysis; it is then convenient to 

derive a new categorical variable which records the group into which each 
subject falls. 

VARIABLE NAMES 

In order to give instructions to a computer program each of the variables 

needs a name. These can usually be at least eight characters long and it is 

a good idea to make full use of this and to choose names which will mean 

something to you (and someone else) in a year’s time. 

SUMMARY TABLES 

It is always important when using computer programs to keep in close touch 

with the data you are analyzing. The simplest way of doing this is to start 

by looking at tables which show the estimated rate or odds parameters for 

different combinations of the values of the explanatory variables. When 

there are two explanatory variables the table is called two-way, and so on. 

Three-way tables are presented as a series of two-way tables. When an 

explanatory variable is quantitative it will usually be necessary to group 

the values of the variable before using it to define a table. Only after 

inspecting various summary tables to get some feel for the main results 

should you use regression models to explore the data more fully. 

FREQUENCY OR INDIVIDUAL RECORDS 

Computer programs are generally able to accept either individual records 

or frequency records based on groups of subjects. For example, in the is¬ 

chaemic heart disease study, we could use the data records for each subject, 

or frequency records showing the number of subjects in each combination of 

age band and exposure group. Entering a frequency record for 25 subjects 

has exactly the same effect as entering 25 identical individual records. 

When an explanatory variable is quantitative its values must be grouped 

before frequency records can be formed, while the actual values can be used 

with individual records. Frequency records can be stored more compactly 

than individual records, and log likelihood calculations are correspondingly 

faster, but using frequency records requires two computer programs — one 
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to compute the frequency records and one to carry out the regression anal¬ 

ysis — and communication between these programs may be inconvenient. 

For case-control studies the number of subjects is usually relatively small 

and the data are usually entered as individual records, ^or cohort studies 

there may be tens of thousands of individual records, possibly further sub¬ 

divided between time-bands, so the data are usually entered as frequency 

records. 

MISSING VALUES 

Most studies contain records which have some missing values, and it is 

essential to have some way of indicating this to the computer program. 

The most convenient code for a missing value is the character *, but when 

a program insists on a numeric code it is best to choose some large number 

like 9999. When there are many variables in a study the analyses are usually 

on some subset of the variables, and the program will automatically include 

those records with complete data on the subset being used. 

Solutions to the exercises 

22.1 Ac = 5.0 per 1000, 9 = 3.0, 01 = 2.4, 4>2 = 6.0. 

22.2 It is not a new constraint. Table 22.1 shows that when the rate 

ratio for exposure is constant over age bands then the rate ratios for age 

will automatically be constant over exposure groups. 

22.3 The predicted rates for the six combinations of age and exposure 

are 

Age Unexposed Exposed 

40 - 49 4.44 10.61 

50 - 59 5.06 12.10 

60 - 69 8.88 21.22 

22.4 The effect of age level 1 is exp(0.1290) = 1.14. The 90% confidence 

interval for this effect is 

x 
1.14 v exp(1.645 x 0.4753) 

which is from 0.52 to 2.49. 
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Poisson and logistic regression 

In principle the way a computer program goes about fitting a regression 

model is simple. First the likelihood is specified in terms of the original 

set of parameters. Then it is expressed in terms of the new parameters 

using the regression equations, and finally most likely values of these new 

parameters are found. In studies of event data the two most important 

likelihoods are Poisson and Bernouilli, and the combinations of these with 

regression models are called Poisson and logistic regression respectively. 

Gaussian regression is the combination of the Gaussian likelihood with 
regression models and will be discussed in Chapter 34. 

23.1 Poisson regression 

When a time scale, such as age, is divided into bands and included in 

a regression model, the observation time for each subject must be split 

between the bands as described in Chapter 6. This is illustrated in Fig. 23.1, 

where a single observation time ending in failure (the top line) has been 

split into three parts, the last of which ends in failure. These parts can then 

be used to make up frequency records containing the number of failures and 

the observation time, as was done for the ischaemic heart disease data in 

Table 23.1, or they can be analysed as though they were individual records. 

If they are to be analysed as though they were individual records then 

each of these new records must contain variables which describe which time 

band is being referred to, how much observation time is spent in the time 

band, and whether or not a failure occurs in the time band. Values of 

Table 23.1. The IHD data as frequency records 

Cases Person-years Age Exposure 

4 607.9 0 0 

2 311.9 0 1 

5 1272.1 1 0 

12 878.1 1 1 

8 888.9 2 0 

14 667.5 2 1 
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I 

40 50 60 70 Age 

Fig. 23.1. Splitting the follow-up record. 

other explanatory variables, such as exposure, must also be included. The 

idea extends to more than one time scale — each record then refers to an 

observation of a subject through one cell of a Lexis diagram — but the 

number of new records can then be many times the number of subjects 
and analysis becomes cumbersome. 

To instruct a computer program to fit a Poisson regression model to the 

frequency records in Table 23.1 it is first necessary to enter the names of the 

variables which contain the observation time for the record, the number of 

failures, the exposure level and the age band. When the Poisson regression 

option is selected the program automatically assumes that the regression 
model is of the form 

log(Rate) = Corner + A + B + . . . , 

where A, B, etc., are explanatory variables. It is therefore only necessary 

to instruct the program that the rate for each record is to be calculated 

from the person-years variable and the number of failures variable, and that 

exposure and age are to be included in the model as explanatory variables. 

The log likelihood for each combination of age band and exposure takes 

the standard Poisson form. For example when age is at level 2 and exposure 

is at level 1 the rate parameter is A?. There are 14 failures and 667.5 person- 
years so the log likelihood for \\ is 

141og(A?) - 667.5A?. 

The total log likelihood (in terms of the original parameters) is equal to 

the sum of the separate log likelihoods for the six cells of the table. This 

total is expressed (by the computer program) in terms of the four new pa- 
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rameters Corner, Age(l), Age(2), and Exposure(l), using the information 

provided by the regression model. As usual the most likely values of the 

log parameters are found on the log scale and some programs leave the user 
to convert these back to the original scale. 

The same log likelihood is obtained from individual records as from fre¬ 

quency records, provided the explanatory variables in the individual records 

take discrete values in the same way as for the frequency records. For ex¬ 

ample, the contribution to the log likelihood from a subject with exposure 
at level 1, age band at level 2, and observation time y, is 

dlog(Af) -y\\, 

where d takes the value 1 if the subject fails in this age band and 0 oth¬ 

erwise. Adding this log likelihood over all subjects contributing to the 

frequency record with exposure at level 1 and age at level 1 gives 

141og(A?) - 667.5A?, 

which is the same as the log likelihood for this frequency record. 

A computer program for Poisson regression can also be used after the 

confounding effect of age has been allowed for by indirect standardization, 

that is by calculating the expected number of failures using standard refer¬ 

ence rates. This is because the log likelihood for the parameter representing 

the (common) ratio of age-specific rates in a study group to the age-specific 

reference rates has the same algebraic form as the log likelihood for a rate 

parameter; one is obtained from the other by exchanging the person-years 

and the expected number of failures. With this exchange, the original 

parameters are now rate ratios expressing age-controlled comparisons of 

different sections of the study group to the reference rates. The regression 

model relates these to a smaller number of parameters in the same way 

as with rates. Note that the parameter estimates in such models are, in 

effect, ratios of SMRs. For the reasons discussed in Chapter 15, they can 

be misleading if an inappropriate set of reference rates is used. 

23.2 Logistic regression 

In logistic regression the original parameters are odds parameters and these 

are expressed in terms of new parameters in the same way as for the rate 

parameter. The most important application of logistic regression is to 

case-control studies and we shall use the study of BCG and leprosy as an 

illustration. 
For convenience the data from this study are repeated in Table 23.2, 

which shows the numbers of cases and controls by age and BCG vaccination. 

Taking a prospective view the response parameter is the odds of being a 

case rather than a control, so a useful way of summarizing these data is to 
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Table 23.2. Cases of leprosy and controls by age and BCG scar 

Age Leprosy cases Healthy controls 
Scar - Scar + Scar - Scp,r + 

0-4 1 1 7 593 ll 719 
5-9 11 14 7143 10184 
10-14 28 22 5611 7 561 
15-19 16 28 2 208 8117 
20-24 20 19 2 438 5 588 
25-29 36 11 4 356 1625 
30-34 47 6 5 245 1234 

Table 23.3. Case/control ratio ( xlO3) by age and BCG 

Age 
BCG scar 

Absent Present 

0-4 0.13 0.08 
5-9 1.54 1.37 
10-14 4.99 2.91 
15-19 7.25 3.45 
20-24 8.20 3.40 
25-29 8.26 6.77 
30-34 8.96 4.86 

show the estimated value of this parameter, which is the case/control ratio, 

for different levels of age and BCG vaccination. This summary is given in 

Table 23.3 and shows a consistently lower case/control ratio for those with 

a BCG scar than for those without. It also shows that the case/control 
ratio increases sharply with age in both groups. 

Because there are many subjects in this study the data are entered to 

the computer program as frequency records. Table 23.4 shows the data as 

an array of frequency records ready for computer input. Programs often 

require the data to be entered as the number of cases and the total number 

of subjects for each record, rather than as the number of cases and the 

number of controls. The change is easily made by deriving a new variable 

equal to the variable for the number of cases plus the variable for the 
number of controls. 

The log likelihood contribution for a frequency record in which N sub¬ 

jects split as D cases and H controls takes the Bernoulli form 

D\og(u>) - TV log(1 + a>), 

where u is the odds, given by the model, that a subject in that frequency 
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Table 23.4. The BCG data as frequency records 

Cases Total Scar Age 
1 7594 0 0 
1 11720 1 0 

11 7154 0 1 
14 10198 1 1 
28 5639 0 2 
22 7583 1 2 
16 2224 0 3 
28 8145 1 3 
20 2458 0 4 
19 5607 1 4 
36 4392 0 5 
11 1636 1 5 
47 5292 0 6 

6 1240 1 6 

record is a case rather than a control. When fitting a regression model the 

total log likelihood is expressed in terms of new parameters using the re¬ 

gression equations and most likely values of the new parameters are found. 
For individual records the log likelihood is 

dlog(w) - log(l +w), 

where d = 1 for a case and d = 0 for a control. The sum of the log 

likelihoods for all subjects contributing to a frequency record is equal to 

D log (a;) - N log(l + uo), 

which is the same as the log likelihood for the frequency record. 

The regression model 

log (Odds) = Corner + Age + BCG, 

expresses the constraint that the odds ratio for BCG vaccination is constant 

over age groups. Apart from the corner, all the parameters in this model 

are odds ratios. The BCG parameter compares the odds of being a case 

for subjects who are BCG positive to the odds of being a case for subjects 

who are BCG negative. The six age parameters compare the odds of being 

a case for subjects in the age groups 1-6 to the odds of being a case in age 

group 0. The most likely values of these parameters (on a log scale) are 

shown in Table 23.5. 

Exercise 23.1. What is the most likely value of the odds ratio for BCG vac- 
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Table 23.5. Output from a logistic regression program 

Parameter Estimate SD 

Corner -8.880 0.7093 

Age(l) 2.624 0.7340 
Age(2) 3.583 0.7203 
Age(3) 3.824 0.7228 
Age(4) 3.900 0.7244 
Age(5) 4.156 0.7224 
Age(6) 4.158 0.7213 

BCG(l) -0.547 0.1409 

cination? Does this seem about right, from Table 23.3? Compare this estimate 

with the Mantel-Haenszel estimate given in Chapter 17. 

The parameters in the model 

log (Odds) = Corner + Age + BCG, 

apart from the corner, refer to changes in the log odds of being a case. 

From Chapter 16 we know that the odds of being a case is proportional to 

the odds of being a failure in the study base, provided the selection of cases 

and controls is independent of both age and BCG status. More precisely, 

7r 
Odds of being a case = K- 

1 — 7r 

where 

K 
Probability that a failure is sampled as a case 

Probability that a survivor is sampled as a control 

On a log scale 

log(Odds) = log (K) + log 
7T 

1 — 7T 

so a change in the log odds of being a case is equal to the corresponding 

change in the log odds of failure in the study base. It follows that estimates 

of the effects of age and BCG on the log odds of being a case also estimate 

the effects of age and BCG on the log odds of failure in the study base. 

This argument does not apply to the corner (which is not a change in log 

odds) so unless K is known the corner parameter in the study base cannot 
be estimated. 
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Table 23.6. A simulated group-matched study 

Age 

BCG scar 
Cases Controls 

Absent Present Absent Present 
0-4 1 1 3 5 
5-9 11 14 48 52 
10-14 28 22 67 133 
15-19 16 28 46 130 
20-24 20 19 50 106 
25-29 36 11 126 62 
30-34 47 6 174 38 

When the disease is rare the probability of failure in the study base is 
small and the odds of failure are related to the rate A by 

where T is the duration of the study. Thus 

log(Odds) = log(iv) + log ( 
\ 1 — 7T 

~ log(A') + log(T) + log(A), 

and the same argument shows that effects estimated from a logistic re¬ 

gression model are also estimates of effects on the log rate in the study 
base. 

23.3 Matched case-control studies 

In Chapter 18 we presented a simulated group-matched case-control study, 

based on the BCG study, in which the age distribution of controls is made 

equal to that of the cases by taking four times as many controls as cases 

in each age stratum. The results from this study are shown again in Ta¬ 

ble 23.6. 

When estimating the effect of BCG the matching variable, age, cannot 

be ignored, so the appropriate model to fit is 

log(Odds) = Corner + Age + BCG, 

even though the effects of age in this model may be close to zero. The results 

of fitting this model are shown in Table 23.7. As expected the estimate of 

the BCG effect is virtually unchanged, although it has a slightly larger 

standard deviation because it is based on a smaller number of controls. 
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Table 23.7. Regression output for the group-matched study 

Parameter Estimate SD 

Corner -1.0670 0.800 

Age(l) -0.0421 0.827 
Age(2) 0.0119 0.812 

Age(3) 0.0713 0.814 

Age(4) 0.0244 0.816 

Age(5) -0.1628 0.814 

Age(6) -0.2380 0.813 

BCG -0.5271 0.155 

However, the age effects are very different from the previous output for 

the whole data set in Table 23.5. They are now all close to zero but this 

does not mean that age can be omitted from the model. To do so would 

produce a biased estimate of the BCG effect. Variables which have been 

used in the matching must be included in the model used to estimate the 

effects of interest. The same point was made in Chapter 18 where matched 

case-control studies were analysed by stratifying on the matching variable 

and using the Mantel-Haenszel method to combine the separate estimates 

of the effect of interest over strata. 

Exercise 23.2. Explain the large differences in the age effects between the two 

outputs. You may find it helps to make a summary table of case/control ratios 

based on the data in Table 23.6. 

Using a computer program for logistic regression is a convenient way of 

analyzing group-matched case-control studies and gives correct estimates of 

odds ratios, at least for variables not used in the matching, provided there 

are not too many matching strata. However, in individually matched case- 

control studies each new case introduces its own stratum and, therefore, 

a new nuisance parameter. This turns out to be one of the situations in 

which replacing the nuisance parameters by their most likely values and 

using profile likelihood to estimate the parameters of interest gives the 

wrong answer. For individually matched studies the likelihood argument of 

Chapter 19 can be extended to cover regression models. This new method 

is called conditional logistic regression analysis, and will be discussed in 

Chapter 29. 

23.4 Modelling risk and prevalence 

The prospective approach to the regression analysis of case-control studies 

regards the case/control status as the outcome variable. In Chapter 1 we 

discussed other epidemiological studies in which the outcome of interest 
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is binary. Most important are studies of risk(sometimes called cumulative 

incidence studies) in which each subject is studied for a fixed period, the 

outcome being failure or survival, and cross sectional prevalence studies in 
which each subject’s present state is recorded as diseased or healthy. 

In both these types of study the original parameters are probabilities. 

For case-control studies, we choose to model odds rather than probabilities 

because odds ratios are independent of the sampling fractions used and 

have a ready interpretation as risk or rate ratios in the study base. For 

risk and prevalence studies there is no such compelling reason to use the 

odds, although it often proves useful to do so because the log odds is 

unconstrained and models for the log odds are likely to describe the data 
better than models for 7r or log(7r). 

An alternative to the log odds may be derived from the relationship 

between 7r, the probability of failure in a time interval of length T, and A, 
the failure rate for this interval. This relationship is given by 

Cumulative survival probability = exp(- Cumulative failure rate) 

that is, 

1 — 7r = exp(—AT), 

so 

log(l — 7r) = —AT 

and 

log(- log(l - 7r)) = log(T) + log(A). 

Thus models for log(— log(l — n)) may be interpreted as models for log(A), 

apart from the corner parameter, and parameters which are estimated from 

such models may be interpreted as the logarithms of rate ratios. The func¬ 

tion log(—log(l — 7r)) is called the complementary log-log transformation 

of 7r and some programs allow regression models to be fitted on this scale. 

Provided tv is less than about 0.2 the complementary log-log function does 

not differ appreciably from the log odds, so in this case regression models 

for the log odds can also be interpreted as regression models for log(A). 

For diseases in which mortality (and migration) of subjects is unaffected 

by their contracting the disease, there is a similar relationship between 

age-specific prevalence and the age-specific incidence rate. In this case, 

parameters of complementary log-log models for prevalence are identical 

to parameters of an underlying model for log incidence rates. However in 

general such an assumption cannot be made and the relationship between 

effects on prevalence and effects on incidence is complicated. 
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Solutions to the exercises 

23.1 The most likely value of the log of the BCG parameter is —0.547. 

This corresponds to an odds ratio of exp(—0.547) = 0.579. We therefore 

estimate that vaccination with BCG reduces the incidence rate of leprosy 

in the base study to about 58% of what it would be without vaccination. 

From Chapter 17 the Mantel-Haenszel estimate of the BCG parameter is 

0.587. 

23.2 The discrepancies between the two outputs is due to the age match¬ 

ing of controls to cases in the second analysis. In the first analysis there is no 

such matching, and the age parameters refer to the underlying relationship 

between age and leprosy incidence (incidence increases with age). Match¬ 

ing controls to cases with respect to age has the effect that the sampling 

probabilities for controls differ between age strata so that K, the constant 

of proportionality between the odds of being a case and the odds of failure 

in the study base, now varies between age bands. It follows that the age 

parameters of the model now include the effect of variation in sampling 

probabilities, and are not interpretable. 
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Testing hypotheses 

The scientific imagination knows no bounds in the creation of theories and 

interesting models, but when should such elaboration end? The principle 

which is invoked to deal with this problem is Occam’s razor. This principle 

holds that we should always adopt the simplest explanation consistent with 

the known facts. Only when the explanation becomes inconsistent are we 

justified in greater elaboration. Occam’s razor has much in common with 

statistical tests of null hypotheses. Statisticians erect null hypotheses and 

seek positive evidence against them before accepting alternative explana¬ 

tions. This philosophical position should not be taken to imply that the 

absence of evidence against a null hypothesis establishes the null hypothesis 
as being true. 

24.1 Tests involving a single parameter 

An explanatory variable with two levels requires only one parameter to 

make a comparison between them. When the comparison is made using a 

rate ratio (or an odds ratio) the null value is 1.0, or zero on the log scale. 

The simplest way of testing for a zero null value is to use the Wald test, 

based on the profile log likelihood for the parameter being tested. This 

involves referring 

(V)' 
to tables of the chi-squared distribution on one degree of freedom, where 

M is the most likely value of the log of the parameter and S is its standard 

deviation. These quantities are the ones listed in the computer output 

under estimate and standard deviation. 

Exercise 24.1. Table 24.1 repeats the results of the regression analysis of the 

ischaemic heart disease data. Carry out the Wald test of the hypothesis of no 

effect of exposure on IHD incidence. 

A log likelihood ratio test based on the profile likelihood for the exposure 

parameter can also be used to test the hypothesis in Exercise 24.1. The pro¬ 

file log likelihood ratio for a zero exposure effect is the difference between 

two log likelihoods: (a) the log likelihood when the exposure parameter is 
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Table 24.1. Program output for the ischaemic heart disease data 

Parameter Estimate SD 
Corner -5.4180 0.4420 

Exposure 0.8697 0.3080 

Age(l) 0.1290 0.4753 
Age(2) 0.6920 0.4614 

zero and the age parameters take their most likely values given that there 
is no exposure effect, and (b) the log likelihood evaluated when all parame¬ 
ters take their most likely values. The former is obtained by fitting a model 
which includes age but not exposure, and the latter is obtained by fitting 
a model which includes both age and exposure. The difference between 
these two log likelihoods gives the profile log likelihood ratio, and the test 
is carried out by referring minus twice this value to the chi-squared distri¬ 
bution with one degree of freedom. Some programs report the deviance, 
a quantity closely related to the log likelihood which we shall discuss in a 
later section of this chapter. 

Exercise 24.2. The log likelihoods for the models 

log(Rate) = Corner + Age + Exposure 

log(Rate) = Corner + Age 

for the ischaemic heart disease data, are —247.027 and —251.176. How can you 

tell which likelihood was obtained for which model? Carry out the likelihood 

ratio test for a zero exposure effect and compare it with the Wald test calculated 
in the previous exercise. 

The score test for a zero exposure effect is found from a quadratic 
approximation which has the same gradient and curvature as the profile 
log likelihood at the null value. Since the log likelihood ratio test is easy 
to obtain using a computer program the score test is rarely carried out, 
although some programs do offer this option. 

24.2 Tests involving several parameters 

When a variable has three levels two parameters are required to make 
comparisons between the levels. A test that just one of these parameters 
takes its null value is rarely of interest. The hypothesis that both take their 
null values is usually more relevant, because this corresponds to the variable 
having no effect on the response. We shall now consider the extension of 
the likelihood ratio test to cover this situation. A convenient example is 
provided by the problem of testing the effect of age in the analysis shown 
in Table 24.1, although this is a hypothesis of no scientific interest! 
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The same general principle as for one parameter is used: the log likeli¬ 
hood for the model 

Corner + Age + Exposure 

which includes the two age parameters, is subtracted from the log likelihood 
for the model 

Corner + Exposure, 

in which the two age parameters are zero. This gives the log likelihood 

ratio for testing the hypothesis that both age parameters take their null 

values. Minus twice the log likelihood ratio is referred to the chi-squared 

distribution with two degrees of freedom, because two parameters have 

been set to their null values. In this case minus twice the log likelihood 

ratio is equal to 4.016, and the p-value is 0.134, showing that there is no 

significant effect of age on ischaemic heart disease in this study. 

Exercise 24.3. Does the fact that there is no significant effect of age on incidence 

in this study mean that there is no need to control for age when comparing 

exposure groups? 

There is some temptation to scan the output for the model which in¬ 

cludes both age and exposure and to try to interpret the separate tests of 

the two parameters for age, rather than making a joint test. Using the 

Wald test with the results in Table 24.1 shows that the data support both 

null values for age when tested separately, but it would be unwise to deduce 

from this that there is no effect of age. This is because both age effects are 

rather imprecisely estimated, due to the fact that only 6 heart attacks were 

observed in the first age band. When the corner is located where there is 

very little data it is common to see effects for both levels 1 and 2 which are 

small compared to their standard deviations, yet a highly significant effect 

from level 1 to level 2. The only safe way of testing the effect of age is 

to make a test of the joint hypothesis that both age effects take their null 

value. The Wald test can be generalized to do this (as can the score test), 

but the easiest test to use is the log likelihood ratio test. 

24.3 Testing for interaction 

The regression model used in the test for an exposure effect imposes the 

constraint that the effect of exposure is constant over age bands. Similarly 

for the test for age effects. An important question to ask is whether it is 

reasonable to impose these constraints, or whether the data better support 

different exposure effects in each age band, and different age effects in each 

exposure group. When the effects of exposure vary with age there is said 

to be interaction between exposure and age. Interaction between exposure 

and age automatically implies interaction between age and exposure and 

vice versa. 
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Table 24.2. Definition of interactions in terms of exposure 

Exposure 

0 1 

0 5.0 15.0 
Age 1 12.0 42.0 

2 30.0 135.0 

0 5.0 5.0 x 3.0 
Age 1 12.0 12.0 x 3.5 

2 30.0 30.0 x 4.5 

0 5.0 5.0 x 3.0 
Age 1 12.0 12.0 x 3.0 x 1.167 

2 30.0 30.0 x 3.0 x 1.5 

To test for interaction it is necessary to choose new parameters in a 

way that allows for separate effects of exposure in the different age bands. 

This is done by choosing one parameter to measure the effect of exposure 

in the first age band and two to measure the extent to which the effects of 

exposure in the other two age bands differ from the effect in the first age 

band. The way this is done is best illustrated using numerical values for 
the parameters. 

A set of illustrative values for the 6 rate parameters are shown at the 

top of Table 24.2. The rate ratios for exposure by levels of age are 3.0, 3.5, 

and 4.5, shown in the middle part of the table, so these rate parameters 

do not obey a multiplicative model. The extent of the departure from the 

multiplicative model can be measured by expressing 3.5 and 4.5 as ratios 

relative to 3.0, as shown in the third part of the table. These ratios, which 

take the values 1.167 and 1.5 in this case, are called interaction parameters. 

Table 24.3 shows the same thing in terms of the rate ratios for age by 

levels of exposure. These rate ratios are 2.4 and 6.0 when exposure is at 

level 0 but 2.8 and 9.0 when exposure is at level 1. The extent to which these 

differ, measured as ratios relative to the rate ratios at level 0 of exposure, 

are again equal to 1.167 and 1.5. Thus the interaction parameters are 

symmetric in exposure and age. 

Tables 24.2 and 24.3 are combined in Table 24.4. Using the terminology 

of regression models, the 6 original rate parameters are re-expressed in 

terms of the corner, the rate ratio for exposure when age is at level 0, 

the rate ratio for age when exposure is at level 0, and the two interaction 

parameters. This way of re- expressing the original rate parameters has 

not resulted in any reduction in the number of parameters; its sole purpose 

is to assess the extent of the departures from the multiplicative model. We 
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Table 24.3. Definition of interactions in terms of age 

Exposure 
0 1 

0 5.0 15.0 
Age 1 12.0 42.0 

2 30.0 135.0 

0 5.0 15.0 
Age 1 5.0 x 2.4 15.0 x 2.8 

2 5.0 x 6.0 15.0 x 9.0 

0 5.0 15.0 
Age 1 5.0 x 2.4 15.0 x 2.4 x 1.167 

2 5.0 x 6.0 15.0 x 6.0 x 1.333 

Table 24.4. Definition of interactions in terms of exposure and age 

Exposure 
Age 0 1 
0 5.0 5.0 x 3.0 
1 5.0 x 2.4 5.0 x 3.0 x 2.4 x 1.167 
2 5.0 x 6.0 5.0 x 3.0 x 6.0 x 1.333 

shall write the model with interaction in one or other of the forms 

Rate = Corner x Exposure x Age x Exposure-Age 

log(Rate) = Corner + Exposure + Age + Exposure-Age. 

To test for interaction it is necessary to fit the model with and without 

interaction parameters and to measure the log likelihood ratio for these 

two models. Minus twice this log likelihood ratio is then referred to ta¬ 

bles of chi-squared on two degrees of freedom. The chi-squared has two 

degrees of freedom because the hypothesis being tested is that two interac¬ 

tion parameters take their null values. The instruction to include interac¬ 

tion parameters is done by including the term Age-Exposure in the model 

description. When this is done the output will include estimated values 

for the interaction parameters, but these are rarely of much use because 

they are chosen specifically to make the test for no interaction. If there 

is interaction then it will usually be best to report the effects of exposure 

separately for each age band. If there is no interaction then the effects 

of exposure and age should be obtained from the model without interac¬ 

tion parameters. Further details on how to report interactions are given in 

Chapter 26. 
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Table 24.5. Estimates of parameters in the model with interaction 

Parameter Estimate SD 

Corner -5.0237 0.500 

Exposure(l) -0.0258 0.866 

Age(l) -0.5153 0.671 

Age(2) 0.3132 0.612 

Age (1) • Exposure (1) 1.2720 1.020 

Age (2) • Exposure (1) 0.8719 0.973 

Table 24.5 shows the output for the ischaemic heart disease data when 

fitting the model which includes the interaction between exposure and age. 

The interaction parameters are given names like Age(l)-Exposure(l) and 

Age(2)-Exposure(l). In general the number of interaction parameters be¬ 

tween a variable on a levels and one on b levels is (a — l)(b — 1). 

Exercise 24.4. Verify from Table 24.5 that the estimated corner parameter in 

the model with interaction is now the log of the observed rate for unexposed 

subjects in age band 0, and the estimated Exposure(l) parameter is now the 

observed rate ratio (exposed/unexposed) in age band 0. (The observed rates are 

in Table 22.6.) 

24.4 Deviance 

The log likelihood for a regression model, evaluated at the most likely 

values of the parameters, is a measure of goodness-of-fit of the model - 

the greater the log likelihood, the better the fit. Since the absolute value 

of the log likelihood is not itself of interest there is some advantage in 

always reporting a log likelihood ratio, compared to some other model. A 

convenient choice is the saturated which includes the maximum possible 

number of parameters. The output would then include the log likelihood 

ratio between the model being fitted and the saturated model. For use 

with tables of chi-squared it is slightly more convenient to report minus 

twice the log likelihood ratio, a quantity which is called the deviance for 

the model being fitted. Each deviance has degrees of freedom equal to the 

difference between the number of parameters in the model and the number 

in the saturated model. 

The deviance is a measure of badness of fit; the larger the deviance the 

worse the fit. Two models are compared by comparing their deviances. 

The change in deviance is minus twice the log likelihood ratio for the two 

models because the log likelihood for the saturated model occurs in both 

deviances and cancels (see Fig. 24.1.) The degrees of freedom for this test 

are found by subtracting the degrees of freedom for the two deviances. For 
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Log likelihood (x2) 

Saturated model 

Model A 

Deviance Deviance 

for A for B 

Model B 

Fig. 24.1. Relationship between deviance and log likelihood 

example, when fitting the models 

log(Rate) = Corner + Age + Exposure 

log(Rate) = Corner + Exposure, 

to the ischaemic heart disease data the corresponding values for the two 
deviances were 1.673 and 5.689. The difference between these is 4.016 which 
is the same as the result obtained earlier in the chapter for minus twice the 
log likelihood ratio. 

Exercise 24.5. How do you know which deviance was obtained for which model? 

How many degrees of freedom do the two deviances have? 

When the data are entered as frequency records the saturated model 

has the same number of parameters as there are frequency records. In 

the case of the ischaemic heart disease data there are six records so the 

saturated model has 6 parameters. All models with six parameters are 

saturated and have the same log likelihood. The model which includes the 

interaction parameters between age and exposure has six parameters, and 

is saturated, so it follows that the deviance for the model 

log(Rate) = Corner + Age + Exposure 

provides a test of no interaction between age and exposure. It may be 

referred directly to a chi-squared distribution with two degrees of freedom. 

When the data are entered as individual records the saturated model has 

the same number of parameters as the number of individual records and the 

deviance measures minus twice the difference between the log likelihood for 

the fitted model and this saturated model. This is not a test of anything 

useful. There is no short cut for making a test of no interaction using 

individual records: it is necessary to obtain the deviances for the models 
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Table 24.6. Cases (controls) for oral cancer study 

Tobacco 
Alcohol 

0 1 2 3 

0 10 (38) 7 (27) 4 (12) 5 (8) 
1 11 (26) 16 (35) 18 (16) 21 (20) 
2 13 (36) 50 (60) 60 (49) 125 (52) 

3 9 (8) 16 (19) 27 (14) 91 (27) 

Table 24.7. Case/control ratios for the oral cancer data 

Alcohol 

(oz/day) 
Tobacco (cigs per day) 

0 1-19 20-39 40+ 

0 0.26 0.42 0.36 1.12 
0.1 - 0.3 0.26 0.46 0.83 0.84 
0.4 - 1.5 0.33 1.13 1.22 1.93 
1.6 + 0.63 1.05 2.40 3.37 

with and without the interaction parameters. 

24.5 Models with two exposures 

Because regression models treat all explanatory variables in the same way, 

models for studies with two exposures look very similar to models for stud¬ 

ies with one exposure and one confounder. However, there are some differ¬ 

ences in the way different hypotheses are interpreted. 

Table 24.6 repeats the study of oral cancer introduced in Chapter 16, 

in which the numbers of cases and controls are tabulated by two exposures, 

alcohol consumption (on four levels) and tobacco consumption (also on four 

levels). For alcohol the levels are 0, 0.1-0.3, 0.4-1.5, and 1.6+ ounces per 

day (coded as 0, 1, 2, and 3). For tobacco the levels are 0, 1-19, 20-39, and 

40+ cigarettes per day (also coded as 0, 1, 2, and 3). A summary table of 

case/control ratios by alcohol and tobacco is shown in Table 24.7. Because 

the frequencies in the table are small, there is a lot of random variation, 

but there is an overall tendency for the ratios to increase both from left to 

right along rows, and from top to bottom down columns. This indicates 

that both variables have an effect on cancer incidence; there is an effect of 

tobacco when alcohol intake is held constant, and vice versa. 

An important question is whether the two exposures act independently 

of one another. In other words, are the effects of tobacco the same at all 

levels of alcohol, and are the effects of alcohol the same at all levels of 

tobacco? This question is answered by testing for no interaction between 

alcohol and tobacco, but it must be emphasized that the test depends on 
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how the effect parameters are defined. When they are defined as ratios 

the interaction parameters are also ratios and measure departures from a 

model in which the two exposures combine multiplicatively. By choosing to 

measure effects as ratios we have therefore chosen to interpret independent 

action as meaning that the two exposures act multiplicatively. In Chap¬ 

ter 28 we show how the effects can be defined as differences, in which case 

the interaction parameters are also differences and measure departures from 

a model in which the two exposures combine additively. In this case we 

have chosen to interpret independent action as meaning the two exposures 
act additively. 

If there is a significant interaction then it will be necessary to report 

the effects of alcohol separately as odds ratios for each level of tobacco 

consumption, and the effects of tobacco separately as odds ratios for each 

level of alcohol. On the other hand, if there is no significant interaction 

then the two exposures may be assumed to act independently and we can 

estimate the effects of alcohol controlled for tobacco and the effects of 

tobacco controlled for alcohol. Note that even when the two exposures 

act independently it is still necessary to control each for the other. This 

is because people’s drinking and smoking habits are not independent so 

ignoring one when studying the other could lead to biased estimates. 

The test for no interaction is carried out by comparing the fit of the 

multiplicative model 

log(Odds) = Corner + Alcohol + Tobacco, 

with that of the model which includes the interaction parameters, 

log(Odds) = Corner + Alcohol + Tobacco + Alcohol • Tobacco. 

Since the second of these models is saturated the test can be based directly 

on the deviance for the multiplicative model. Provided the data support 

the hypothesis of no interaction it is then possible to test for an effect of 

alcohol, controlled for tobacco, by comparing the models 

log(Odds) = Corner + Alcohol + Tobacco 

log(Odds) = Corner + Tobacco. 

Similarly the test for an effect of tobacco is made by comparing the models 

log(Odds) = Corner + Alcohol + Tobacco 

log(Odds) = Corner + Alcohol. 

In each of these tests the smaller of the two models being compared is 

obtained from the larger by setting some parameters to zero. The smaller 
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Fig. 24.2. Nesting of models. 

model is then said to be nested in the larger model. Comparisons between 

models where neither is nested in the other are not allowed since they do not 

correspond to a hypothesis in which some parameter values are set equal to 

zero. Fig. 24.2 shows the five possible models which could be fitted to the 

alcohol and tobacco data. The arrows indicate nesting so any two models 

joined by an arrow correspond to a hypothesis which can be tested. For 

example, a comparison of models 4 and 5 is a test of no interaction, and a 

comparison of models 4 and 2 is a test of no effect of tobacco (controlling 

for alcohol). In model 1 both alcohol and tobacco parameters are set to 
zero so it is nested in all of the other models. 

Exercise 24.6. For the models set out in Fig. 24.2, the deviances are (1) 132.561, 

(2) 37.951, (3) 61.880, and (4) 6.689. What are the degrees of freedom associated 

with each of these deviances? Carry out the four tests corresponding to the 

arrows in the figure. What is the interpretation of these tests? 

24.6 Goodness-of-fit tests 

A question which is often asked is whether a model provides an adequate 

fit to the data. Because the absolute value of the log likelihood has no 
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meaning this question can only be answered by comparing the model with 

other more complicated models and asking whether the extra complication 

is justified. The saturated model represents the most complicated model 

which could be used and the deviance automatically provides a comparison 

of the model currently being fitted with the saturated model. For this 

reason the deviance for a model is often put forward as a test of goodness 

of fit (really badness-of-fit) of the model. There are several cautions which 

need to be borne in mind when interpreting the deviance in this way. 

1. Comparisons with the saturated model are meaningless when the data 
are entered as individual records. 

2. Comparisons with the saturated model which are on many degrees of 

freedom will lack power to discriminate; in this case it will be better 

to make comparisons with models which are less complicated than 
the saturated model. 

3. The deviance is only approximately distributed as chi-squared and 

this approximation gets worse as the degrees of freedom increase. 

24.7 Collinearity 

In a study in which tobacco and alcohol consumption were very highly 

associated it would be very difficult to make an estimate of the effects of 

alcohol controlled for tobacco (or of the effects of tobacco controlled for 

alcohol). This is because controlling for tobacco involves fixing the level 

of tobacco consumption and then estimating the effects of alcohol from 

subjects whose tobacco consumption is at this level. If alcohol and tobacco 

are highly associated then nearly all subjects at a fixed tobacco level level 

will have the same level of alcohol consumption and it will therefore be 

difficult to estimate the effects of alcohol. In an extreme cases fixing the 

level of tobacco might fix the level of alcohol completely, in which case it 

would be impossible to estimate the effects of alcohol. In such a case the 

two variables are said to be collinear. This situation is not uncommon, 

particularly when working with derived variables. 

Solutions to the exercises 

24.1 In the Wald test (0.8697/0.3080)2 = 7.97 is referred to the chi- 

squared distribution with one degree of freedom, giving a p-value of 0.005. 

24.2 The larger likelihood, -247.027, corresponds to the first model be¬ 

cause this has more parameters than the second. The log likelihood ratio 

for the two models is -251.176 - (-247.027) = -4.149. Minus twice this 

is 8.249 which is quite close to the Wald chi-squared value obtained in the 
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previous exercise. Referring 8.30 to the chi-squared distribution with one 
degree of freedom gives p = 0.004. 

24.3 No. When taking account of confounding variables it is best to 

play safe and to control for them regardless of whether their effects are 
significant or not. Very little is lost by doing this. 

24.4 The Corner, Exposure(l), Age(l) and Age(2) parameters are 

log(6.580/1000) 

log(6.412/6.580) 

log(3.931/6.580) 

log(9.00/6.58) 

= -5.0237 

= -0.0258 

- -0.5153 

= 0.3132. 

24.5 The smaller deviance corresponds to the larger model since this will 
be a better fit. The degrees of freedom are 2 and 4 respectively. 

24.6 The number of parameters in models 1 to 5 are 1, 4, 4, 7, and 

16, respectively. The number of parameters in the saturated model is 16, 

so the degrees of freedom for the deviances are 16 — 1 = 15, 16 — 4 = 12, 

16 —4 = 12, 16 — 7 = 9, and 16 —16 = 0 respectively. Note that model 5 has 

16 parameters so it is saturated. The table below shows the comparisons 
of models in terms of the change in deviance. 

Comparison Change in deviance Change in df 

(1) vs (2) 132.56 - 37.95 = 94.61 15- 12 = = 3 

(1) vs (3) 132.56 — 61.88 = 70.68 15-12 = = 3 

(2) vs (4) 37.95 - 6.69 = 31.26 12-9 = : 3 

(3) vs (4) 61.88 - 6.69 = 55.19 12 - 9 = : 3 

(4) vs (5) 6.69 - 0 = 6.69 9-0 = : 9 

The last of these comparisons shows that there is no significant interaction. 

This means that the next two comparisons (working up from the bottom) 

make sense. The change in deviance from model 3 to model 4 shows that 

there is a significant effect of alcohol after controlling for tobacco; similarly 

the change in deviance from model 2 to model 4 shows that there is a 

significant effect of tobacco after controlling for alcohol. All of the models 

can be compared with model 1, but these comparisons have little interest. 

For example, a comparison of model 1 with model 2 is a test of the alcohol 

effects (ignoring tobacco) while a comparison of model 1 with model 4 is 

a joint test of the alcohol effects (controlling for tobacco) and the tobacco 
effects (controlling for alcohol). 
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Models for dose-response 

When the subjects in a study receive different levels of exposure, measured 

on a quantitative or ordered scale, it is likely that any effect of exposure 

will increase (or decrease) systematically with the level of exposure. This 

is known as a dose-response relationship, or trend. The existence of such a 

relationship provides more convincing evidence of a causal effect of exposure 

than a simple comparison of exposed with unexposed subjects. Some simple 

procedures for testing for trend were introduced in Chapter 20. These 

tests are based on a log-linear dose-response relationship, that is, a linear 

relationship between the log rate parameter (or log odds parameter) and 

the level of exposure. We now return to this topic and show how such 

dose-response relationships are easily described as regression models. 

25.1 Estimating the dose-response relationship 

To illustrate the use of regression models when exposure is measured on a 

quantitative scale we shall use the case-control study of alcohol and tobacco 

in oral cancer in which there are two exposure variables, both with four 
levels. The model 

log(Odds) = Corner + Alcohol + Tobacco, 

in which alcohol and tobacco are categorical variables each with four levels, 

makes no assumption about dose-response; there are three alcohol parame¬ 

ters and three tobacco parameters. The estimated values of these parame¬ 

ters are shown in Table 25.1. If we were able to assume simple dose-response 

relationships for these two exposures, we could concentrate the available 

information into fewer parameters and, as a result, gain power. 

To study the dose-response for tobacco consumption it helps to change 

from the parameters Tobacco(l), Tobacco(2), and Tobacco(3), which are 

chosen to compare each level of exposure with level 0, to 

Tobacco(l) , Tobacco(2)—Tobacco(l) , Tobacco(3)—Tobacco(2) , 

which are chosen to compare each level with the one before. 

Exercise 25.1. Use the results of Table 25.1 to write down the estimated values 

of these new parameters. Repeat the exercise for alcohol. 
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Table 25.1. Alcohol and tobacco treated as categorical variables 

Parameter Estimate SD 

Corner -1.6090 0.2654 . 
'll 

Alcohol(l) 0.2897 0.2327 

Alcohol(2) 0.8437 0.2383 

Alcohol(3) 1.3780 0.2256 

Tobacco(l) 0.5887 0.2844 

Tobacco(2) 1.0260 0.2544 

Tobacco(3) 1.4090 0.2823 

Table 25.2. The linear effect of tobacco consumption 

Alcohol Tobacco log(Odds) = Corner + • • • 

0 0 - 
0 1 1 x [Tobacco] 
0 2 2 x [Tobacco] 

0 3 3 x [Tobacco] 
1 0 Alcohol(l) 
1 1 Alcohol(l) + lx [Tobacco] 
1 2 Alcohol(l) + 2 x [Tobacco] 
1 3 Alcohol(l) + 3 x [Tobacco] 
2 0 Alcohol(2) 

2 1 Alcohol(2) + lx [Tobacco] 
2 2 Alcohol(2) + 2 x [Tobacco] 
2 3 Alcohol(2) + 3 x [Tobacco] 
3 0 Alcohol(3) 

3 1 Alcohol(3) + lx [Tobacco] 

3 2 Alcohol(3) + 2 x [Tobacco] 
3 3 Alcohol(3) + 3 x [Tobacco] 

The simplest possible dose-response model would assume that each step 

in tobacco consumption, from one level to the next, produces the same 

change in the log odds. This model requires only one parameter for tobacco, 

namely the common change in log odds per change in level. This parameter 

is called the linear effect of tobacco and we shall write it as [Tobacco], where 

the brackets are used to distinguish the linear effect parameter from the 

separate effect parameters for each level. The model is written in full in 

Table 25.2. 

The data from this study are in the form of frequency records contain¬ 

ing the number of cases, the total number of cases and controls, alcohol 
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Table 25.3. Linear effect of tobacco per level 

Parameter Estimate SD 
Corner -1.5250 0.219 

Alcohol(l) 0.3020 0.232 
Alcohol(2) 0.8579 0.237 
Alcohol(3) 1.3880 0.225 

[Tobacco] 0.4541 0.083 

consumption coded as 0, 1, 2, 3, and tobacco consumption coded as 0, 1, 

2, 3. We shall write the model of Table 25.2 in the abbreviated form: 

log(Odds) = Corner + Alcohol + [Tobacco]. 

The regression program output for this model is illustrated in Table 25.3. 

Exercise 25.2. How would you report the meaning of the number 0.4541 in 

Table 25.3? 

A more accurate scale for tobacco consumption would be to use the mid¬ 

points of the ranges of tobacco use at each level, namely 0, 10, 30, and (say) 

50 cigarettes per day. If the tobacco variable were coded in this way then 

the parameter [Tobacco] would refer to the linear effect per extra cigarette 

rather than per change of level. If the data were entered as individual 

records then the individual values for consumption could be used. In view 

of the uncertainties in measuring tobacco use there is something to be said 

for sticking to the scale 0, 1, 2, 3. 

The reparametrization of the alcohol effects carried out in Exercise 25.1 

also suggests a constant effect with increasing level of alcohol consumption. 

This allows the model to be further simplified to 

log(Odds) = Corner + [Alcohol] + [Tobacco], 

where the parameter [Alcohol] is the common effect of an increase of one 
level in alcohol consumption. The regression output for this model is shown 

in Table 25.4. 

Exercise 25.3. Use the output in Table 25.4 to work out what the model predicts 

for the combined effect of level 3 for tobacco and level 3 for alcohol compared to 

level 0 for both. Use the output in Table 25.1 to work out the same prediction 

when tobacco and alcohol are both treated as categorical. 

For comparison we also show, in Table 25.5, the regression output for 

the model where alcohol consumption is measured in approximate mean 

ounces of alcohol per day for each category (0.0, 0.2, 1.0 and 2.0), and 
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Table 25.4. Linear effects of alcohol and tobacco per level 

Parameter Estimate SD 

Corner -1.6290 0.1860 

[Alcohol] 0.4901 0.0676 

[Tobacco] 0.4517 0.0833 

Table 25.5. Alcohol in ounces/day and tobacco in cigarettes/day 

Parameter Estimate SD 

Corner -1.2657 0.1539 

[Alcohol] 0.6484 0.0881 

[Tobacco] 0.0253 0.0046 

tobacco consumption is measured in approximate cigarettes per day for 

each category (0, 10, 30, or 50). The [Alcohol] and [Tobacco] parameters 

now look quite different from those in Table 25.4, but this is because they 

are measured per ounce of alcohol and per cigarette respectively. 

TESTING FOR TREND 

Comparison of log likelihoods for the models 

log(Odds) = Corner + Alcohol + [Tobacco] 

and 

log(Odds) = Corner + Alcohol 

yields a one degree of freedom test for the effect of tobacco controlled for 

the effect of alcohol. The Mantel extension test described in Chapter 20 is 

the corresponding score test, which tests the hypothesis that the [Tobacco] 
parameter takes the value zero. 

TESTING FOR DEPARTURE FROM LINEARITY 

To test for departures from linearity in the dose-response for tobacco, the 

models 

log(Odds) = Corner + Alcohol + Tobacco 

log(Odds) = Corner + Alcohol-f [Tobacco], 

can be compared. In the first model Tobacco refers to the three effects 
of a categorical variable with 4 levels, while in the second [Tobacco] refers 
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Table 25.6. A quadratic dose-response relationship for tobacco 

2 (z)‘2 log(Odds) = Corner + • • • 
0 0 - 

1 1 lx [Tobacco] + lx [Tobsq] 
2 4 2 x [Tobacco] + 4 x [Tobsq] 
3 9 3 x [Tobacco] + 9 x [Tobsq] 

Table 25.7. Predictions from a quadratic relationship 

Effect Predicted from model 
Tobacco(l) 

Tobacco(2) - Tobacco(l) 

Tobacco(3) - Tobacco(2) 

[Tobacco] + lx [Tobsq] 

[Tobacco] + 3 x [Tobsq] 

[Tobacco] + 5 x [Tobsq] 

to the effect of a change of one level in tobacco consumption. The second 
model is a special case of the first, so they can be compared using a log 
likelihood ratio test. 

Exercise 25.4. (a) How many parameters are there in the two models? (b) 

Reparametrize the models so that the second model is a special case of the first, 

with two parameters set to zero, (c) How would you interpret a significant dif¬ 

ference between the fit of these two models? 

25.2 Quadratic dose-response relationships 

The simplest departure from a log-linear dose relationship is a log-quadratic 

relationship. To fit this model it is necessary to create a new dose variable 

which takes the values 0, 1,4, 9, that is the squares of the values used to 

code tobacco consumption. We shall call this new variable ‘tobsq’. The 

model is then fitted by including both tobacco and tobsq and declaring 

them as quantitative variables. The regression equations for this model 

are given in Table 25.6 and these show that when [Tobsq] is zero the dose- 

response is log-linear. Table 25.7 shows the tobacco effects for each level 

relative to the previous one, predicted from the quadratic model, and these 

show that the parameter [Tobsq] measures the degree to which the dose- 

response relationship departs from linearity. 

The log-quadratic model also provides another way of testing for de¬ 

partures from a log-linear dose-response relationship, by comparing the 

models 

log (Odds) = Corner + Alcohol + [Tobacco] 

log(Odds) = Corner + Alcohol + [Tobacco] + [Tobsq], 
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The comparison of these two models provides a test (on one degree of 

freedom) which will be sensitive to a departure from linearity in which the 

effect of tobacco increases with level ([Tobsq]> 0), or decreases with level 
([Tobsq] < 0). 

25.3 How many categories? 

When collecting data, exposure is often measured as accurately as possible 

for individuals and only later are the observed values grouped into a rel¬ 

atively small number of categories. For example, the number of previous 

births would be recorded exactly, but might then be grouped as 

0, 1-3, 4-6, 7-9, 10+ . 

When the variable is to be treated as categorical it is best to keep the 

number of categories small; three may be enough, and five is usually a 

maximum number. For exploratory analyses the use of just two categories 

has the advantage that there is only one effect to interpret, and it can often 

be easier to see what is going on. 

The number of subjects in each category should be roughly the same, 

and to achieve this tertiles, quartiles or quintiles of the distribution of 

exposure are often used. Tertiles define three equal-sized groups, quartiles 

define four equal-sized groups, and quintiles define five such groups. This 

is quite a sensible way of choosing the grouping intervals provided the 

actual intervals are reported. A serious disadvantage is that such grouping 

intervals will vary from study to study, thus making it harder to compare 

findings. 

When the variable is to be treated as quantitative there is no penalty 

in taking a larger number of categories. In the extreme case the original 

values are used. However, it is best to avoid the situation where one or two 

of the subjects have much higher values than all the rest. This can occur 

with an exposure like the number of previous sexual partners, which might 

he between 0 and 10 for most subjects but reach numbers in excess of 100 

for a few. In such a case the few subjects with high values can dominate 

the fit of a model, and it will be best to group the values so that all the 

high ones fall into a group such as 15 or more. 

25.4 Indicator variables 

In order to fit a model to data the computer program must use the abbre¬ 
viated description of the model to form the regression equations. These 
express the log rate (or log odds) parameter for each record as a linear 
combination of new parameters. For example, when the variable alcohol 
is entered in a model as categorical with levels coded 0, 1, 2, and 3, the 
regression equations include the parameter Alcohol(l) for records in which 
alcohol is at level 1, the parameter Alcohol(2) for records in which alcohol 
is at level 2, and the parameter Alcohol(3) for records in which alcohol is 
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Table 25.8. Indicator variables for the three alcohol parameters 

Ai a2 ^3 Level log(Odds) = Corner + • • ■ 
0 0 0 0 - 

1 0 0 1 Alcohol(l) 
0 1 0 2 Alcohol(2) 
0 0 1 3 Alcohol(3) 

at level 3. The way the program does this is to create an indicator variable 
for each parameter. These variables are coded 1 for records which include 
the parameter and 0 otherwise. The indicator variables A1,A2,A3 for the 
three alcohol parameters are shown in Table 25.8 alongside the levels of al¬ 
cohol. Note that Ai, which indicates when Alcohol(l) should be included, 
takes the value 1 when alcohol is at level 1, and so on. 

Exercise 25.5. Repeat Table 25.8 to show indicator variables for the case where 

both alcohol and tobacco have four levels. 

A variable which is treated as quantitative acts as its own indicator 

since the way the variable is coded indicates what multiple of the linear 
effect parameter is to be included in the regression equations. For example, 

when tobacco is included as a quantitative variable, coded 0, 1, 2, and 3, 

the equations include the parameter [Tobacco] when tobacco is at level 1, 

twice the parameter [Tobacco] when tobacco is at level 2, and three times 

the parameter [Tobacco] when tobacco is at level 3. The coding of the 

tobacco variable thus indicates which multiple of the parameter is to be 

included in the model. 

INTERACTION PARAMETERS 

When interaction terms are included in the model, indicator variables are 

again used to form the regression equations. For simplicity we shall consider 

the situation where tobacco has only two levels, 0 for non-smokers and 1 for 

smokers. The model in which both alcohol and tobacco are categorical, and 

which contains interaction terms, is shown in full in Table 25.9. Indicator 

variables Ai, A2,A3 have been used for alcohol, and the indicator variable 

T has been used for tobacco. Note that when tobacco has only two levels, 

coded 0 and 1, it serves as its own indicator variable. 
The indicator variable for Alcohol(l)-Tobacco(l) takes the value 1 when 

both alcohol and tobacco are at level 1, and 0 otherwise. The indicator vari¬ 

able for Alcohol(2)-Tobacco(l) takes the value 1 when alcohol is at level 2 

and exposure is at level 1, and 0 otherwise, and so on. The most convenient 

way of generating these interaction indicator variables is by multiplying to¬ 

gether pairs of the original indicator variables for alcohol and tobacco. This 

is shown in Table 25.10: the indicator for Alcohol(l)-Tobacco(l) is found 

from the product of Ai and T; the indicator for Alcohol(2)-Tobacco(l) is 
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Table 25.9. The model with interaction between alcohol and tobacco 

Ale. Tob. log(Odds) = Corner + • • • 
0 

0 

0 

1 Tobacco(l) '^v 
1 0 Alcohol(l) 
1 1 Alcohol(l) + Tobacco(l) + Alcohol(l)-Tobacco(l) 
2 0 Alcohol(2) 
2 1 Alcohol(2) + Tobacco(l) + Alcohol(2)-Tobacco(l) 
3 0 Alcohol(3) 
3 1 Alcohol(3) + Tobacco(l) + Alcohol(3)-Tobacco(l) 

Table 25.10. Indicator variables for interaction parameters 

Ai A-2 ^3 T A\ T a2-t a3-t 

0 0 0 0 0 0 0 
0 0 0 1 0 0 0 
1 0 0 0 0 0 0 
1 0 0 1 1 0 0 
0 1 0 0 0 0 0 
0 1 0 1 0 1 0 
0 0 1 0 0 0 0 
0 0 1 1 0 0 1 

made up from product of A2 and T, and so on. When the categorical 

variables are on a and b levels respectively there are (a - 1 )(b - 1) new 
indicators for the interaction parameters. 

In the first regression programs it was left to the user to create indicator 

variables for all parameters other than those referring to quantitative vari¬ 

ables. Although it is rarely necessary to do this today, indicator variables 

are still important when we wish to use a non-standard parametrization of 
a regression model. 

25.5 The zero level of exposure 

The level of exposure which is coded zero is often qualitatively different 

from the other levels. For example, zero previous births represents a very 

different biological experience from any other point on this scale. In such 

cases it may be better to omit the zero level when estimating the dose- 

response relationship, by allowing the response of at zero dose to differ 

from the general relationship (see Fig. 25.1). A parameter for each of these 

comparisons can be included in a model by using the indicator variable for 
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log (Rate) 

i i-r 

0 12 3 

Dose, z 

Fig. 25.1. Separating zero exposure from the dose-response. 

Table 25.11. Separating zero exposure from the dose-response 

Tobacco Non-smoker log(Odds) = Corner + • • • 
0 1 [Non-smoker] 
1 0 1 x [Tobacco] 
2 0 2 x [Tobacco] 
3 0 3 x [Tobacco] 

non-smokers to fit the model 

log(Odds) = Corner + [Non-smoker] 4- [Tobacco]. 

The regression equations for all four dose levels are shown in Table 25.11. 

The parameter [Non-smoker] measures the discrepancy between the log 

odds for non-smokers and that predicted by extrapolation of the dose- 

response line to zero dose. 

25.6 Using indicators to reparametrize the model 

Indicator variables provide a convenient way of changing from one set of 

parameters to another. We shall give one example, namely changing from 

parameters which compare each level with level 0, to parameters which 

compare each level with the one before. Using tobacco as an example, the 

first set of parameters are Tobacco(l), Tobacco(2), and Tobacco(3). We 

shall call the new parameters Tobdiff(l), Tobdiff(2), and Tobdiff(3). The 
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Table 25.12. Indicators to compare each level with the one before 

Tobacco D1 D2 D2 

0 0 0 0 
1 1 0 0 
2 1 1 0 

3 1 1 1 

relationship between the new parameters and the old is 

Tobdiff(l) = Tobacco(l) 

Tobdiff(2) = Tobacco(2) — Tobacco(l) 

Tobdiff(3) = Tobacco(3) — Tobacco(2). 

This relationship may be inverted to give the old in terms of the new as 

Tobacco(l) = Tobdiff(l) 

Tobacco(2) = Tobdiff(l) + Tobdiff(2) 

Tobacco(3) = Tobdiff(l) + Tobdiff(2) + Tobdiff(3) 

Let the indicator variables for Tobdiff(l), Tobdiff(2), Tobdiff(3), be denoted 

by Di, D2, D3. The first of these should indicate Tobdiff(l) when tobacco 

is at level 1, 2, or 3; the second should indicate Tobdiff(2) when tobacco is 

at level 2 or 3; and the third should indicate Tobdiff(3) when tobacco is at 
level 3. Their values are shown in Table 25.12. 

Solutions to the exercises 

25.1 The estimates of the new parameters will be 

and 

Tobacco(l) 

Tobacco (2) — Tobacco (1) 

Tobacco(3) —Tobacco(2) 

0.5887 

0.4373 

0.3830 

Alcohol(l) 

Alcohol(2)—Alcohol(l) 

Alcohol(3)—Alcohol(2) 

0.2897 

0.5540 

0.5343 

25.2 The parameter represents the change in log odds for each increase 

in level of tobacco consumption. 
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25.3 The combined effect on the log odds is 

+(3 x 0.4901) + (3 x 0.4517) = 2.8254. 

This corresponds to a multiplicative effect of x 16.87 on the odds. When 

alcohol and tobacco are both treated as categorical the combined effect on 
the log odds is 

+ 1.3780 + 1.4090 = 2.7870 

which corresponds to a multiplicative effect of x 16.23 on the odds. 

25.4 (a) The first model has 7 parameters, the second has 5. (b) Starting 

with Tobacco(l), Tobacco(2), and Tobacco(3), change to the parameters 
New(l), New(2), and New(3), where 

New(l) = Tobacco(l) 

New(2) = {Tobacco(2) — Tobacco(l)} — Tobacco(l) 

New(3) = (Tobacco(3) — Tobacco(2)} — Tobacco(l). 

Then New(l) measures the effect of changing level from 0 to 1; New(2) 

measures the difference between this and the effect of changing level from 

1 to 2; New(3) measures the difference between this and changing level 

from 2 to 3. The model with all three parameters allows separate effects 

of changing level while the model with New(2) and New(3) equal to zero 

imposes the constraint that there is a common effect of changing level. 

(c) When the first model is a significantly better fit than the second model 

it means that there is a significant departure from linearity in the dose- 

response. 
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25.5 Let Ai, A2, A3,Ti,T2,T3 be the indicator variables for alcohol and 

tobacco. The table below shows how these variables are coded and the 

regression model which is fitted when all the indicators are included. 

A\ a2 A3 Ti T2 T3 

-_ 
log(Odds) = Corner + • • • 

0 0 0 0 0 0 - 

0 0 0 1 0 0 Tobacco(l) 
0 0 0 0 1 0 Tobacco(2) 
0 0 0 0 0 1 Tobacco(3) 
1 0 0 0 0 0 Alcohol(l) 
1 0 0 1 0 0 Alcohol(l) + Tobacco(l) 
1 0 0 0 1 0 Alcohol(l) + Tobacco (2) 
1 0 0 0 0 1 Alcohol(l) + Tobacco(3) 
0 1 0 0 0 0 Alcohol(2) 
0 1 0 1 0 0 Alcohol(2) + Tobacco(l) 
0 1 0 0 1 0 Alcohol(2) + Tobacco(2) 
0 1 0 0 0 1 Alcohol(2) + Tobacco(3) 
0 0 1 0 0 0 Alcohol(3) 
0 0 1 1 0 0 Alcohol(3) + Tobacco(l) 
0 0 1 0 1 0 Alcohol(3) + Tobacco(2) 
0 0 1 0 0 1 Alcohol(3) + Tobacco(3) 
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More about interaction 

In this chapter we draw together some of the ideas of the previous chapters, 

particularly those relating to interaction, and consider studies with several 

explanatory variables. The first stage in the analysis of such studies is to 

classify the explanatory variables into those whose effects are of interest 

(the exposures), and those whose effects are of no interest, but which must 

be included in the model (the confounders). In order to illustrate the prob¬ 

lems which arise with several confounders we introduce a new example in 

Table 26.1* This shows the proportion of subjects with monoclonal gamma- 

pathy by age, sex, and work. Work can be agricultural or non-agricultural 
and is the exposure of interest. Age and sex are confounders. 

26.1 Interaction between confounders 

To control for the confounding effect of both age and sex using stratification 

it would be necessary to form 5 x 2 = 10 age- sex strata. The separate 

estimates of the effect of work for each stratum would then be pooled over 

strata using the Mantel-Haenszel method. The same thing can be done by 
fitting the model 

log(Odds) = Corner + Age + Sex + Age • Sex + Work, 

which includes age-sex interaction parameters. The total number of param¬ 

eters for the corner, age, sex, and the age-sex interaction is 1+4+1+4 = 10, 

which is the same as the number of the age-sex strata. Fitting the model 

with interaction does the same job as age-sex stratification, which has one 

parameter for each of the 10 strata, t 

It is also possible to control for age and sex by omitting the interaction 

term and fitting the model 

log(Odds) = Corner + Age + Sex + Work. 

*From Healy, M. (1988) GLIM. An Introduction, Oxford Science Publications. 

TThe abbreviation Age*Sex is sometimes used for the group of terms 

Age + Sex + Age • Sex 
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Table 26.1. Prevalence of monoclonal gammapathy 

Age 
Agricultural (0) Non-agricultural (1) 

Male (0) Female (1) Male (0) Female (1) 
<40 (0) 1/1590 1/1926 2/1527 17/712 
40-49 (1) 12/2345 7/2677 3/854 0/401 
50-59 (2) 24/2787 15/2902 5/675 4/312 
60-69 (3) 53/2489 38/3145 3/184 1/80 
70+ (4) 95/2381 63/2918 2/75 0/20 

The estimated effect of work is —0.134 with standard deviation 0.244 in 
the model with interaction and —0.136 with standard deviation 0.243 in 
the model without. In this case, therefore, omitting the interaction term 
makes almost no difference. 

Exercise 26.1. How should the effect of work be interpreted in terms of disease 

prevalence? 

When using stratification or logistic regression to control for confounders 

it is best to keep the number of parameters in the model as low as possible. 

This is because both techniques are based on profile likelihood which can 

be unreliable when there are too many parameters to eliminate. Including 

interactions can require a lot of extra parameters, possibly too many to 

deal with by using profile likelihood. For example, if one confounder has 

45 levels and another has 6 levels, then the model with interaction requires 

5 x 44 = 220 extra parameters. Even when none of the confounders has a 

large number of levels it will still take many extra parameters to include in¬ 

teractions when there are a lot of them. For example, 10 confounders each 

with 3 levels require 180 extra parameters to include interactions between 

all possible pairs. In the monoclonal gammapathy example the model with 

interaction has 11 parameters while the model without interaction has only 

7. By fitting a model without interaction we have reduced the number of 

parameters from 11 to 7. This is not a great saving and little is lost in this 

case by playing safe and fitting a model with the interaction. 

It is possible, of course, to test for interaction between any pair of 

confounders. For the monoclonal example the deviance for the model with 

age-sex interaction is 6.771 on 9 degrees of freedom, and the deviance 

for the model without interaction is 7.649 on 13 degrees of freedom. The 

difference between these two deviances is only 7.649 — 6.771 = 0.878, on 

4 degrees of freedom, so the interaction is not significant. Unfortunately 

such a test has only sufficient power to be useful when based on a few 

degrees of freedom, and these are just the situations where nothing much 

is gained by omitting interactions. Thus the decision about whether or 

not to include interactions must usually be taken on other grounds. As 
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a general rule, interactions between a confounder with many levels, and 
any other confounder, are omitted. For confounders with fewer levels it is 
only necessary to consider interaction between those pairs in which both 
are known to be very strongly related to the outcome. It is then probably 
best to include the interaction term for such pairs as a matter of course. 
Age and sex often form such a pair, and are usually controlled for by using 
a model which includes the age-sex interaction. 

It can happen that a confounding variable has too many levels to be 
included into a logistic regression model, even before considering interac¬ 
tions. This occurs with matched case-control studies in which controls are 
individually matched to each case. Each case-control set then corresponds 
to a level of the categorical variable which defines the sets. The effects 
of this variable are of no interest but they must be included in the model 
when estimating the effects of other more interesting variables. The way 
out of this dilemma is to use conditional logistic regression (see Chapter 29) 
which uses a conditional likelihood in place of the profile likelihood. 

26.2 Interaction between exposure and confounders 

When controlling the effect of an exposure for the confounding effects of 
other variables there is a basic assumption that there is no interaction 
between exposure and the confounding variables. This assumption can be 
tested by comparing the model without interaction with a model containing 
the appropriate interaction term. 

For example, when using the model 

log(Odds) = Corner + Age + Sex + Work 

to control the effect of work for age and sex, there is an assumption of no 
interaction between work and age and no interaction between work and 
sex. To test the work and age interaction we compare the model without 
interactions with the model 

log(Odds) = Corner + Age + Sex + Work + Work • Age. 

To test the work and sex interaction we compare the model without inter¬ 
actions with 

log(Odds) = Corner + Age + Sex + Work + Work • Sex. 

Exercise 26.2. Use the deviances in Table 26.2 to test for interaction between 
work and the other two variables. 
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Table 26.2. Testing for interaction 

Model Deviance 
Corner + Age + Sex + Work 

Corner + Age + Sex + Work + Work-Age 

Corner + Age + Sex + Work + Work-Sex 

7.65 
•» * 

5.81 

7.24 

Fig. 26.1. Log prevalence odds by age 

26.3 Confounders measured on a quantitative scale 

The variable age in Table 26.1 is measured on a quantitative scale (years) 

which has been divided into five groups. When controlling for age we have 

the choice between treating it as categorical with five levels, treating it as 

quantitative with values equal to the mid- points of the five age groups, 

or treating it as quantitative with values on the original scale. The last 

of these alternatives is only possible when the data are in the form of 
individual records. 

Fig. 26.1 shows a plot of the log of the prevalence odds against the mid¬ 
points of the age bands (35, 45, 55, 65, and 75 years) for male agricultural 
workers. The plot shows that the log odds increases approximately linearly 
with age. Plots for the other three groups in the study also show a roughly 
log-linear relationship with age. 

Exercise 26.3. From Fig. 26.1 make a rough estimate by eye of the gradient of 

the line relating log odds to age. Express your answer per 10 years of age. 

The model which assumes a log-linear relationship between odds and 
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Table 26.3. A quadratic relationship with age 

Parameter Estimate SD 

Corner -6.682 0.344 

Work(l) -0.148 0.243 

[Age] 

[Agesq] 
1.204 

-0.084 

0.264 

0.049 

Sex(l) -0.583 0.115 

age for each work-sex combination has fewer parameters than the model 

which ignores the quantitative nature of the age scale, and this suggests 

that there may be some advantage in treating age as quantitative with 

values equal to mid-points of the five age groups. Making this modification 

to the model with age, sex, and work, we obtain 

log(Odds) = Corner + [Age] + Sex + Work, 

where [Age] refers to the effect for a change in age of one year. There are 

now only 4 parameters in this model and the work effect is —0.186 com¬ 
pared to —0.134 using the model in which age was treated as a categorical 

variable. This difference is large in comparison with the size of the effect, 

even though in neither analysis does the effect achieve statistical signifi¬ 

cance. The reason for the difference is that the relationship with age is not 

entirely linear. 
We can test for linearity using a log-quadratic model for the relationship 

between log odds and age. The parameters in this model are estimated by 

fitting the model 

log(Odds) = Corner + [Age] + [Agesq] + Sex + Work, 

where the variable agesq takes as values the squares of the values of age. 

The results are shown in Table 26.3. When both [Age] and [Agesq] are 

included the deviance is 8.93 on 15 degrees of freedom — 3.13 less than 

when only [Age] is included. Referring this difference to the chi-squared 

distribution on 1 degree of freedom shows it to be significant at the 0.10 

level. This would not normally be considered very convincing evidence of 

departure from linearity, but note that the estimate of the work effect is 

now in rather better agreement with earlier values. 
The important lesson to be learned from this example is that the effect 

of a strong confounder such as age must be properly modelled, and that 

the yardstick of statistical significance may not be adequate for deciding 

upon the appropriate level of complexity. When the data are grouped in 

frequency records it is best to treat the variable as categorical, when using 
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Table 26.4. Interaction between age (quantitative) and work 

Parameter Estimate SD 

Corner -6.211 0.201 

Work(l) -0.299 0.471 

[Age] 0.763 0.058 

Sex(l) -0.584 0.115 

[Age]-Work(l) 0.053 0.188 

individual records it is best to err on the side of over-detailed modelling 

and to fit quadratic or even cubic dose-response relationships. 

26.4 Interaction between categorical and quantitative variables 

One situation where it can be valuable to treat a variable as quantitative 

is when testing for interaction; the resulting reduction in the number of 

parameters needed to measure interaction means that the test will be more 
powerful. 

We have seen how to test for interaction between age and work when 

both are categorical variables, but what if age is a quantitative variable? 

The model without interaction, in which age is quantitative, is 

log(Odds) = Corner + [Age] + Sex + Work. 

To test for interaction between work and quantitative age this is compared 
with 

log(Odds) = Corner + [Age] + Sex + Work + [Age] • Work. 

The model without interaction assumes that the gradient of the log-linear 
relationship of log odds with age is the same in both work groups, while the 
model which contains the interaction term allows for different gradients in 
the two work groups. The [Age].Work parameter measures the extent to 
which the gradient in the second work group differs from the gradient in the 
first, and its null value, corresponding to no interaction, is zero. Output 
for the model which includes the interaction between the linear effect of 
age and work is shown in Table 26.4. 

Exercise 26.4. Use the output in Table 26.4 to test for interaction between age 

as a quantitative variable and work. 

Exercise 26.5. How many parameters would there be for the interaction term 

[Age]-Work if there were three categories of work? 

For a variable which is very strongly related to the response, such as 
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Table 26.5. Interaction between [Age] and Work 

Parameter Estimate SD 

Corner -7.064 0.553 

Age(l) 1.666 0.567 
Age(2) 2.394 0.562 

Age(3) 3.239 0.562 

Age(4) 3.860 0.559 

Sex(l) -0.585 0.115 

Work(l) 0.046 0.544 

[Age]-Work(l) -0.083 0.220 

age in this example, it may be necessary to model the relationship with age 

more closely than by using a linear relationship. Even so, the linear part of 

any new relationship will be the main part and it is worth testing for inter¬ 

action just with this linear part. For example, if a quadratic relationship 

with age is used, as in the model 

log(Odds) = Corner + [Age] + [Agesq] + Sex + Work, 

then the interaction of work with the linear effect of age is tested by in¬ 

cluding the term [Age]-Work in the model. It is also possible to test for 

the interaction of work with the linear effect of age when the effect of age 

is modelled by a categorical variable. This is done by comparing 

log(Odds) = Corner + Age + Sex + Work. 

with 

log(Odds) = Corner + Age + Sex + Work + [Age] • Work. 

This is a more powerful way of testing for interaction than including the 

term Age-Work (which has four parameters), provided the relationship with 

age is predominantly linear. Table 26.5 shows the results of this analysis, 

with quantitative age coded 0 to 4. The deviance for this model is 7.51, 

which is only a little smaller than the deviance for the model without 

interaction. Thus there is no evidence that the work effect varies with 

age. The same conclusion is reached by comparing the estimate of the 

interaction parameter with its standard deviation. Since the estimate of 

the work effect in the model without interaction is also not significant, it 

seems clear that these data provide no evidence for a relationship between 

agricultural work and the prevalence of monoclonal gammapathy. 
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Table 26.6. Model in terms of separate work parameters 

Age Work log(Odds) = Corner + • • • 

0 0 - 

1 0 Age(l) 

2 0 Age(2) 

3 0 Age (3) 
4 0 Age(4) 

0 1 Wbyage(l) 
1 1 Wbyage(2) + Age(l) 
2 1 Wbyage(3) + Age(2) 
3 1 Wbyage(4) + Age(3) 
4 1 Wbyage(5) + Age(4) 

26.5 What to do when there is interaction 

Interaction parameters are chosen specifically to test for interaction; their 

estimated values are of no use in themselves. When there is interaction 

it is necessary to reparametrize so that the new parameters provide a sat¬ 

isfactory summary of the data in this situation. Indicator variables are a 
useful way of doing this. 

Suppose, for example, that in a study of work and age there was an 

interaction between them. The most sensible way of reporting the results 

would be to estimate the effect of work separately for each level of age, 

but few packages allow this as a standard option. One way of doing it 

is by separating the data into age groups and analyzing these separately. 

Another is to reparametrize so that instead of one work parameter and four 

work-age parameters, we use five work parameters, one for each age group. 

Writing these separate work parameters as Wbyage, short for work by age, 

the model is shown in Table 26.6. 

The values taken by the indicator variables for the age parameters are 

the same as before. The indicator variable for Wbyage(l) takes the value 1 

when work is at level 1 and age is at level 0, and 0 otherwise; the indicator 

for Wbyage(2) takes the value 1 when work is at level 1 and age is at level 

1, and 0 otherwise; and so on. One advantage of using indicator variables 

is that it is then possible to include another variable in the model with the 

indicators. This model imposes the constraint that the indicator effects 

are the same within the levels of this extra variable and provides estimates 

of their common values. It would not be possible to do this if the data 

were subdivided on age because subdividing on age is equivalent to fitting 

interaction terms of all variables with age. 

When there is interaction between two exposures it is commonly re¬ 

ported by creating a new categorical variable with a level for each combi¬ 

nation of the levels of the two exposures. For two exposures, each on four 
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Table 26.7. Rate parameters per 100 000 person-years 

A 
B 0 1 

0 5.0 15.0 
1 20.0 A 

levels, the new variable would have 16 levels, with level 0 corresponding to 

level zero on both exposures and level 16 corresponding to level 3 on both 

exposures. There are 15 parameters for this new variable, measuring the 

ratio of the rate (or odds) for each one of the levels relative to the zero 

level. These are entered in the model in place of the 6 parameters for the 

two exposures and the 9 parameters for their interaction. The estimated 

parameters would be displayed in a four by four table, with the levels of 

one exposure determining the rows and the levels of the other determining 
the columns. 

26.6 Interaction is scale-dependent 

Interaction parameters are chosen to measure departures from a model. 

When the effects of variables are measured as ratios interaction parame¬ 

ters are ratios, chosen to measure departures from a multiplicative model. 

When the effects of variables are measured as differences (see Chapter 28) 

interaction parameters are differences chosen to measure departures from 

an additive model. Thus interaction depends on how the effects are mea¬ 

sured. For example, consider two explanatory variables, A and B, each 

with two levels. Values for three of the parameters involved are shown in 

Table 26.7. For the moment the fourth parameter, A, is left unspecified. 

When effects are measured as ratios the effect of A when B is at level 0 is 

15/5 = 3, and the effect of A when B is at level 1 is A/20. The interaction 

parameter is the ratio of these two effects which is A/60. When effects are 

measured as differences the effect of A when B is at level 0isl5-5 = 10, 

and the effect of A when B is at level 1 is A - 20. The interaction param¬ 

eter is now the difference between these two effects, which is A - 30. It 

follows that if A = 60 there is no departure from the multiplicative model 

but there is a departure from the additive model. Similarly if A = 30 there 

is no departure from the additive model but there is a departure from the 

multiplicative model. 
The choice between measuring effects as ratios or differences is usually 

an empirical one, with the investigator preferring to measure effects in such 

a way as to minimize the interaction, but there are sometimes biological 

grounds for preferring one method to the other. 
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Solutions to the exercises 

26.1 The multiplicative effect of work is the ratio of the prevalence odds 

for non-agricultural workers to the prevalence odds for agricultural workers. 

26.2 The degrees of freedom for the deviances are 

20-(1 + 4+1 + 1) = 13 

20 — (1+ 4 + 1 + 1 +4) = 9 

20-(1 + 4 +1 + 1 + 1) = 12 

The change of deviance with inclusion of the Work. Age interaction is 1.84 

with 4 degrees of freedom, and for the Work.Sex interaction it is 0.41 with 

1 degree of freedom. Neither is significant. 

26.3 The change in log odds over the age range of 35 to 75 is approxi¬ 

mately +4. The gradient is therefore approximately +1 per 10 year age 
band. 

26.4 The Wald test for interaction between the linear effect of age and 
work is 

which is not significant. 

26.5 There would be two parameters for this interaction term. 
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Choice and interpretation of models 

Previous chapters have illustrated the use of regression models using simple 

bodies of data containing relatively few variables. More commonly, we are 

faced with large data files containing many variables. Sometimes derived 

variables such as Quetelet’s weight-for-height index are included in the 

model in addition to or in place of the original variables. In such situations 

it can be difficult to know where to begin, and all too easy to lose one’s way. 

This chapter offers some guidance towards the sensible use of regression 

methods. 

27.1 Variable selection strategies 

A lot has been written about the process of finding the ‘best’ regression 

model in problems involving many variables. Much of this activity has 

been concerned with the search for an optimal strategy, and the relative 

merits of different approaches have been hotly debated. Many computer 

programs implement one or more of these strategies in an automatic model 

selection option called stepwise regression. These programs usually work 

by a combination of the step-up strategy (examining the effect of inclusion 

of variables not yet in the model) and the step-down strategy (examining 

the effect of of removing variables currently in the model). With the recent 

increased speed and reduced cost of computers, some programs now offer an 

exhaustive search of all subsets from a list of possible explanatory variables. 

In assessing the value of such procedures it is important to note that 

regression models have two very different uses in epidemiology. Historically 

they were first used to derive risk scores designed to classify subjects into 

graded categories with respect to risk of developing disease. Later, when 

attention turned to interpretation of the parameter estimates and the close 

relationship between regression and stratification methods became appar¬ 

ent, regression models became important tools for analyses whose aim was 

the advancement of scientific knowledge. For convenience we refer to these 

two uses as prediction and explanation, respectively. 
When the aim is prediction, the best model is the one which best pre¬ 

dicts the fate of a future subject. This is a well defined task and automatic 

strategies to find the model which is best in this sense are potentially use- 
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ful. However, when used for explanation the best model will depend on the 

scientific questions being asked, and automatic selection strategies have no 
place. 

An important tool for assessing how well a model predicts the fate of a 

future subject is cross-validation — a technique in which each subject in 

turn is removed from the dataset and the actual outcome for that subject 

is compared with the predicted outcome using the model based on the re¬ 

maining observations. The deviance for a model will always decrease with 

the introduction of more parameters, but prediction of future observations 

is not always improved. There comes a point at which increasing the com¬ 

plexity of the model to gain a slightly better fit to the observed data will 

reduce the accuracy of its predictions. Cross-validation measures the pre¬ 

dictive properties of the model directly and therefore reflects the adverse 
consequences of fitting too many parameters. 

Cross-validation is potentially expensive in computer time, but simple 

approximate criteria have been developed which allow the assessment of 

whether any step up or down in an automatic model selection procedure 

would be expected to improve prediction. The best known is Akaike’s 
information criterion, namely 

(Reduction in deviance) — 2 x (Increase in number of parameters). 

If this is positive the increased complexity would be expected to improve 
prediction and if negative, to degrade prediction. 

27.2 Explanatory variables and natural experiments 

This book has been entirely concerned with the use of models whose aim 

is explanation. In such analyses there is a clear distinction between the 

roles of exposures and confounders but this distinction is lost when us¬ 

ing regression models — both become explanatory variables. Ignoring the 

distinctions between different types of explanatory variable is appropriate 

when using regression models for prediction, since all variables have the 

same role, but in a scientific analysis of data different explanatory vari¬ 
ables may play quite different roles. 

The distinction between exposure and confounder, as described in this 

book, relies heavily on the idea of experiments of nature. An exposure is 

something which we can intervene to change while a confounder is a variable 

which we would have held constant had we designed the experiment rather 

than leaving it to nature. It is helpful to think of regression analysis as 

simulating an experiment, in the same way. For example, the effects of A 
in the model 

log(Rate) = Corner + A + B + C 

are the effects of changing the level of A in a simulated experiment in 
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which B and C are held constant. Similarly, the effects of B are the effects 

of changing the level of B in a simulated experiment in which the levels 

of A and C are held constant. Thus regression analysis does not simulate 

a single experiment but many. This flexibility of the regression approach 

is undoubtedly useful, but in practice it can also become its most serious 

weakness. To extend our analogy, the data analyst is in a position like 

that of an experimental scientist who has the capability to plan and carry 

out many experiments within a single day. Not surprisingly a cool head is 

required! Before embarking on a regression analysis it is essential to spent 

an hour or so, preferably away from the computer, to list the main scientific 

questions and to think how these can be answered by fitting a series of 

models. Analyses which follow such thought are always simpler and more 

incisive than those which are born of uncritical use of the computer or 

worse, of a stepwise regression program. 

It will rarely be necessary to include a large number of variables in the 

analysis, because only a few exposures are of genuine scientific interest in 

any one study, and there are usually very few variables of sufficient a pri¬ 

ori importance for their potential confounding effect to be controlled for. 

Most scientists are aware of the dangers of analyses which search a long 

list of potentially relevant exposures. These are known as data dredging 

or blind fishing and carry a considerable danger of false positive findings. 

Such analyses are as likely to impede scientific progress as to advance it. 

There are similar dangers if a long list of potential confounders is searched, 

either with a view to explaining the observed relationship between dis¬ 

ease and exposure or to enhancing it — findings will inevitably be biased. 

Confounders should be chosen a priori and not on the basis of statistical 

significance. In particular, variables which have been used in the design, 

such as matching variables, must be included in the analysis. 

Recently there has been some dispute between ‘modellers’, who support 

the use of regression models, and ‘stratifiers’ who argue for a return to the 

methods described in Part I of this book. Logically this dispute is based 

on a false distinction — there is no real difference between the methods. 

In practice the difference lies in the inflexibility of the older methods which 

thereby imposes a certain discipline on the analyst. Firstly, since stratifi¬ 

cation methods treat exposures and confounders differently, any change in 

the role of a variable requires a new set of computations. This forces us 

to keep in touch with the underlying scientific questions. Secondly, since 

strata must be defined by cross classification, relatively few confounders 

can be dealt with and we are forced to control only for confounders of a 

priori importance. These restraints can be helpful in keeping a data anal¬ 

ysis on the right tracks but once the need for such discipline is recognized, 

there are significant advantages to the regression modelling approach. 
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EXAMPLE: DIETARY FAT AND TOTAL ENERGY INTAKE 

The analogy between regression models and imaginary experiments is very 

useful in making decisions about whether to include a variable in a re¬ 

gression model or not. An interesting illustration aris§% in nutritional epi¬ 

demiology when considering the relationship between total energy intake 

and the incidence of coronary heart disease. This relationship was first 

detected because relationships were observed between intake and disease 

risk for a large number of nutrients — the more that was eaten, the lower 

the risk. A relationship with total energy intake, possibly reflecting energy 

expenditure, was considered the most likely explanation. 

However, once this relationship is recognized, how should the relation¬ 

ship between risk and other aspects of the diet, notably fat intake, be 

analysed? One way is to measure nutrient density, which is the ratio of 

daily intake of fat to the total energy intake. This approach is open to the 

criticism that such nutrient densities are not usually independent of total 

energy intake — subjects with high energy intakes typically have a different 

pattern of nutrient densities from subjects with low energy intakes. 

If energy intake is to be regarded as a confounder, then it should be 

controlled for, either by stratification or with a regression model. In the 
latter case we fit a model such as 

log (Rate) — Corner + Fat + Energy 

and interpret the parameters representing the effect of fat in terms of an 
experiment in which fat intake is varied but the total energy content of the 
diet is held constant. Of course, such an experiment would require other 
constituents of the diet such as carbohydrate to vary in order to maintain 
the total energy intake and this must be born in mind when interpreting 
parameters. 

Exercise 27.1. How would you interpret the effect of fat in the model 

log(Rate) = Corner + Fat + Carbohydrate + Energy? 

Other authors have approached the problem of allowing for total energy 

expenditure by dividing total calories between calories from fat and calories 

from other sources, and fitting the model 

log(Rate) = Corner + Fat-calories + Other-calories. 

The parameters representing the effect of fat intake must now be interpreted 

in terms of an experiment in which fat intake is varied while intake of other 

calories is held constant. In this experiment a reduction of fat intake would 

result in a reduction of total energy intake. Such an experiment would be 

difficult to interpret, even if it could be carried out. 
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Finally we should point out that a real public health intervention to 

reduce dietary fat intakes would be unlikely to mimic either of the above 

imaginary experiments. When dietary fat intake is reduced in free-living 

subjects, some of the energy intake is made up from other sources, but typ¬ 

ically there is a net reduction in energy intake. This demonstrates that the 

use of models to predict the effect of intervention usually requires consider¬ 

able extra knowledge. In particular, we need to have some understanding 

of the mechanism by which change will be effected. 

27.3 Endogenous and exogenous explanatory variables 

The ‘effects’ of an explanatory variable are defined in terms of differences 

in log rate (or log odds) between groups of subjects with different levels of 

the variable. Thus the effect of cigarette smoking is defined by contrasting 

rates in smokers and non-smokers, and the effect of serum cholesterol con¬ 

centration (classified as high or low) is defined as the difference in log rate 

between subjects with high cholestrol concentration and subjects with low 

cholesterol concentration. This language encourages people to interpret 

‘effects’ as the change in rates to be expected as a result of intervention to 

change the level, but this is a big step. How are the subjects to alter their 

level? For a variable like serum cholesterol there is no direct way to alter 

its level and any intervention would have to be indirect, for example by 

change of diet or by cholesterol lowering drugs. However, there is no guar¬ 

antee that such mechanisms will bear any relationship to the mechanism 

which led the the study subjects to have different levels in the first place. 

The effect of indirectly changing the levels of serum cholesterol in a group 

of subjects may be completely different from that estimated by comparing 

groups of subjects who just happen to have different levels of cholesterol. 

The same problem arises in an even more acute form when studying 

the effects of two or more interrelated variables, such as blood pressure 

and obesity in relation to the incidence of coronary disease. The effect 

of blood pressure controlled for obesity might now be interpreted as the 

expected effect of changing blood pressure while keeping obesity constant. 

However, is it be possible to intervene to change blood pressure while keep¬ 

ing obesity constant? While this could be achieved, for example by using 

drug treatment, this method of intervention would bear little relation to the 

mechanism that led subjects to their current levels in the first place, and 

it might have different effects. Intervention aimed at life style changes are 

more likely to duplicate these conditions, but might be expected to change 

both blood pressure and obesity simultaneously. In this case the estimated 

effects of blood pressure controlled for obesity, or obesity controlled for 

blood pressure could be poor predictors of the effect of the intervention. 

The position is much clearer when considering environmental exposures, 

such as radiation dose, occupational exposure to toxic chemicals, and even 
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cigarette smoking. In such cases, it is entirely reasonable to imagine an 

experiment in which exposure of groups is directly varied without any con¬ 

sequent change in other variables, and the parameters of regression models 
are easier to interpret. 

Variables such as cholesterol concentration, blood pressure, and obesity 

are called endogenous. The word endogenous means ‘growing from within’. 

Variables such as smoking, diet and occupation are called exogenous. The 

distinction between endogenous and exogenous variables is borrowed from 

the behavioural sciences and, although the distinction is not hard and fast, 

is useful in drawing attention to the different assumptions which it is neces¬ 

sary to make for the two kinds of variable when interpreting the parameters 

of regression models as expected effects following intervention. 

27.4 Interpretation of interaction 

An underlying theme of this chapter is that while distinctions between 

different types of explanatory variable are not relevant to the mechanical 

process of estimating the parameters of a regression model, they are es¬ 

sential to the strategy adopted in the analysis and to the interpretation 

of results. This is particularly true when dealing with interaction. The 

word describes a purely mathematical concept in regression models. Its 

relationship to the scientific language of epidemiology requires further con¬ 

sideration of the nature of the variables involved. 

We shall first consider interaction between two confounders. There 

seems to be no word to describe this in epidemiology, almost certainly 

because the phenomenon is of no scientific interest. Whether we include 

such terms in a model or not is a purely technical matter of trading the 

number of parameters against freedom from assumptions. Usually if there 

are two strong confounders such as age and sex, the gain in efficiency from 

assuming no interaction between them is extremely modest and it will 

usually be safer to include an interaction term regardless of its significance. 

However, if we are worried about the aggregate effect of five or six weak 

confounders, then omission of interaction terms is unlikely to have a major 

effect on estimates of parameters of interest. 

Interaction between a confounder and an exposure of interest is known 

in epidemiology as effect modification and is clearly of considerable scientific 

importance, since the consistency of an effect in diverse study groups would 

usually be considered relevant to labelling a relationship as ‘causal’, in the 

sense of predicting the effect of future interventions. The ease with which 

we can test for such interaction in the framework of regression models 

represents a clear advance over earlier stratification methods in which the 

absence of such interaction is a hidden assumption. 

Finally, the question of interaction between two exposures of interest is 

usually of considerable importance, both for the scientific interpretation of 
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Exposure Measurement 

Fig. 27.1. Misclassification of exposure. 

an analysis and for its implications for preventive intervention. We shall 

deal with this in more detail in Chapter 28. 

27.5 Errors of measurement of explanatory variables 

In the models discussed in this book it is assumed that explanatory vari¬ 

ables are correctly measured. This assumption is often unjustified in prac¬ 

tice, but epidemiologists have generally been prepared to ignore measure¬ 

ment errors. Some have believed that to do so is justifiable providing there 

is no relationship between errors of measurement of exposure and disease 

outcome, that is if there is no differential misclassification. This is now 

known to be false. 
To illustrate the effect of ignoring measurement error we consider the 

hypothetical situation illustrated in Fig. 27.1, in which exposure E is mea¬ 
sured imperfectly by measurement M. As a result of this misclassification 
there is a probability of 0.2 that an exposed subject is misclassihed as un¬ 
exposed, and a probability of 0.2 that an unexposed subject is misclassified 
as exposed. The probability of failure depends only on true exposure, tak¬ 
ing the value 0.1 for exposed subjects and 0.05 for unexposed subjects. 
An epidemiological study observes only the marginal relationship between 

measured exposure and failure. 

Exercise 27.2. Calculate probabilities for each of the eight tips of the tree in 

Fig. 27.1. By collapsing over exposure categories, calculate the probabilities for 

each of the four possible combination of measured exposure and disease (failure) 

status. Hence derive the probability tree expressing the probability of failure 
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Table 27.1. Diastolic blood pressure (DBP) and rate ratios for stroke 

Baseline Rate Mean DBP 

DBP ratio at baseline after 2 years 

< 69 0.276 63.6 72,7 

70-79 0.395 73.8 77.0 

80-89 0.595 83.6 83.0 

90-99 1.000 93.5 91.2 

100-109 1.904 103.4 99.2 

> 110 3.875 116.4 107.3 

conditional upon measured exposure. 

It is clear from this exercise that the effect of exposure is decreased by 

the measurement error: whereas the risk ratio for true exposure is 2, the 

risk ratio for measured exposure is only 1.42. It is worth noting that 

20% misclassification would be regarded as acceptable in many branches of 
epidemiology. 

Similar considerations apply when exposure takes on more than two 

levels. The observed dose-response relationship between measured expo¬ 

sure and disease outcome is less steep than the underlying relationship with 

true exposure, under any realistic assumptions about the dose-response re¬ 

lationship. This is illustrated by the data of Table 27.1 which concern the 

relationship between diastolic blood pressure and subsequent incidence of 

stroke.* These data are taken from a re-analysis of seven cohort studies, 

and the first two columns of the table summarize the relationship between 

diastolic blood pressure at a single initial visit (the ‘baseline’ measurement) 

and subsequent incidence. Note that in the rate ratios the fourth category 

is taken as reference. These were obtained by fitting the model 

log(Rate) = Corner + Study + DBP 

where study is a categorical variable with one level for each study, so that 

confounding of the relationship due to differences between the study co¬ 

horts is eliminated. The third column shows the mean of the baseline 

diastolic pressures for each of the five categories. The log rate ratios are 

plotted against the mean baseline values in Fig. 27.2 (solid line). This 

line represents the apparent dose-response relationship between a single 

measurement of diastolic blood pressure and the incidence of stroke. It is 

approximately log-linear, so that essentially the same relationship would 
have been obtained by fitting the model 

log(Rate) = Corner + Study + [DBP], 

*From Macmahon, S. et al. (1990), The Lancet, 335, 765-774. 
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Fig. 27.2. Apparent and true dose-response relationships. 

where [DBP] is measured per mm Hg. However, this line is a poor repre¬ 

sentation of the true relationship between blood pressure and the incidence 

of stroke. Blood pressure is subject to both short-term fluctuations and to 

measurement errors, neither of which will be reflected in the risk of stroke 

which is determined by the longer-term average level of blood pressure. The 

final column of Table 27.1 shows the mean blood pressure taken two years 

later in representative samples taken from each of the five groups. These 

figures provide a better estimate of long-term average blood pressure in 

the six groups as the short- term fluctuations and measurement errors are 

washed out. Plotting the rate ratios for stroke against these new values for 

mean diastolic blood pressure provides a truer estimate of the relationship 

between stroke incidence and the long- term average level of diastolic pres¬ 

sure. This plot is shown in Fig. 27.2 as a broken line and clearly represents 

a stronger relationship than the apparent relationship based on a single 

baseline measurement. This finding is true in general. When an explana¬ 

tory variable suffers from measurement error or within subject variability 

the linear effects of this variable will be closer to zero than when there is 

no error or variability. This is known as regression dilution 
This second example demonstrates both the attenuation of relationships 

owing to exposure measurement error and one of the methods which has 

been suggested for correcting for it. An alternative approach is to formally 

adopt probability models such as that illustrated in Fig. 27.1 and to esti¬ 

mate the conditional probabilities for every branch of the tree. Validation 
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substudies are required in order to estimate the misclassification probabili¬ 

ties. A difficulty with this approach is that when there are several levels of 

exposure, the number of parameters in the model can become very large. 

In summary, when exposures are subject to measurement error, the ap¬ 

parent exposure effects will be less pronounced than the true underlying 

relationships. When confounders are measured inaccurately, the conse¬ 

quences are even more serious. Since the relationship between disease and 

confounder is not correctly estimated in these circumstances, it follows that 

the analysis will not properly control for confounding. If both exposure and 

confounder are measured inaccurately, there exists the possibility that the 

two sets of errors may be interrelated, so that the apparent relationship be¬ 

tween exposure and confounder may be quite different from that between 

the underlying variables. In these circumstances models for relationships 

between measured exposure, measured confounder, and response have no 

interpretation in terms of an imaginary experimental intervention and may 

be scientifically meaningless. Such might well be the position in our ex¬ 

ample involving dietary fat and total energy intake. Measured intakes of 

total energy and of each specific nutrient are usually derived from the same 

dietary records, taken over a period of several days. Not only are such mea¬ 

surements very imperfect measures of long-term intake, but it is reasonable 

to believe that errors in the measured fat intake will be closely related to 

errors in measured energy intake, since the former is an important contrib¬ 

utor to the latter. Regression models which include total energy as well 

specific nutrients may, therefore, not be interpretable in practice. 

Solutions to the exercises 

27.1 The parameter(s) measure the effect of changes in fat intake while 

holding both total energy intake and carbohydrate intake constant. To 

reduce fat intake while holding both total energy and carbohydrate intake 

constant would be very difficult for an individual to do and would require 

large changes in other components of the total energy intake, such as pro¬ 
tein. 

27.2 From top to bottom the probabilities are 0.016, 0.144, 0.004, 0.036, 

0.008, 0.152, 0.032, and 0.608. The remaining calculations are shown in 

Fig. 27.3. The probability of failure conditional upon having been measured 

as exposed is 0.075, while the failure probability conditional upon having 
been measured as unexposed is 0.053. 
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0.016 + 0.008 = 0.024 

0.144 + 0.152 = 0.296 

0.004 + 0.032 = 0.036 

0.036 + 0.608 = 0.644 

Fig. 27.3. Failure probabilities conditional upon measured exposure. 



28 
*] Additivity and synergism 

When discussing the way two exposures combine to influence the risk of 

disease the word interaction is used to refer to departures from either mul¬ 

tiplicative or additive models. In general these models have no biological 

basis and interaction is therefore a purely statistical concept. The interac¬ 

tion parameters are chosen solely to test hypotheses and are not useful for 

describing the data when there is interaction. The word synergism is often 

used, in a similar sense, to refer to departures from a biological model for 

the independent action of two exposures. When the joint effect of two expo¬ 

sures is greater than would be expected from the separate effects, according 

to such a model, the exposures are said to display positive synergism. Syn¬ 

ergism is therefore a particular kind of interaction but precisely what kind 

depends on the biological model for independent action. 

Epidemiologists often use the word synergism without specifying pre¬ 

cisely what they mean by independent action. In other words they use it in 

a statistical sense. When used in this way synergism is generally measured 

as a departure from an additive model. This suggests an ill-defined biolog¬ 

ical model which predicts that the rate for the joint effect of two exposures 

is the sum of the rates for the separate effects. An example of such a model 

is shown in Fig. 28.1 which refers to a situation where disease is caused by 

one or other of two precipitating events. Exposure A influences the chance 

of the first event occurring, while exposure B influences the chance of the 

second event occurring. When A and B act independently their effects on 

the rate will be additive because 

Rate(Event 1 or 2) = Rate(Event 1) + Rate(Event 2). 

In cases like this it makes sense to fit an additive model so that departures 

from this model can be measured and used to test whether the two expo¬ 

sures act independently. In this chapter we consider some of the special 

problems which arise when using additive regression models. 
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Fig. 28.1. Two precipitating events for disease. 

28.1 Fitting additive models 

With additive models effects are measured as differences between rates 

(or odds) parameters rather than as ratios. The use of stratification to 

control the additive effects of an exposure for confounding would be based 

on the assumption that the difference between the rate parameters for 

the different levels of exposure is constant over the strata. Formulating 

the same problem in terms of regression models the effects of an exposure 

controlled for a confounder are found by fitting the additive model for the 

rate, 

Rate = Corner + Exposure + Confounder. 

The assumption that the additive effect of the exposure is the same for all 

strata formed by the confounder is expressed by the fact that the model is 

additive, with no interaction terms. 
Additive models are fitted to data by choosing parameters to maximize 

the log likelihood in the same way as for multiplicative models, but the 

calculations are different and require different computer programs. Simi¬ 

larly log likelihood ratios are used to test hypotheses in the same way as 

for multiplicative models. In practice additive models can be more trouble¬ 

some to fit than multiplicative models because the most likely parameter 

values do not necessarily predict rates which are greater than zero. It is 

then rather difficult to know what to do. Should one treat this as evidence 

that the additive model is a poor fit, or should one find most likely values 

subject to the constraint that they predict positive rates? Generally the 

latter policy is followed, but it can be difficult to implement.* 

*This problem does not arise with multiplicative models because these are fitted as 
additive models for the log rate and the log rate is not constrained to be positive. 
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28.2 Discriminating between additive and multiplicative models 

When there are rival biological grounds for choosing an additive model and 

a multiplicative model the investigator will wish to discriminate between 

the two models by seeing which fits the data best. The deviances for the 

two models provide an informal way of looking at this but they cannot be 

compared in a formal test because the additive and multiplicative models 

are not nested. The solution to this technical problem is to find an extended 

model which contains both additive and multiplicative models as special 
cases. One such model is 

(Rate)p — 1 

P 
Corner + A + B, 

where p is a parameter yet to be determined. In this model A and B refer 

to parameters which measure differences in the value of 

(Rate)p — 1 

P 

As p approaches 1 the model reduces to 

Rate — 1.0 = Corner + A + B 

in which the A and B parameters measure differences in the rate. As p 

approaches zero, the left-hand side of the model approaches the log of the 
rate t , so the model reduces to 

log (Rate) = Corner + A + B, 

in which the A and B parameters measure differences in the log rate. The 

two extremes of the extended model therefore correspond to an additive 

model (p = 0) and a multiplicative model (p = 1). When this extended 

model is fitted for a range of values for p, including p = 1 and p = 0, a 

comparison of the log likelihoods for the different values of p will indicate 

which is the most likely value for p and whether the additive or multi¬ 

plicative model is preferred. It may turn out, of course, that both models 

provide an adequate fit, or that neither model is acceptable. We do not 

advocate the use of the model with values of p other than zero or one, 

because effect parameters measured as differences in the value of 

(Rate)p — 1 

P 

^This follows because, for small p, 

Rp = [exp(log(R))]p = exp[plog(R)] « 1 + p\og(R). 
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would be hard to interpret. The sole purpose of the extended model is to 

provide a framework in which to choose between additive and multiplicative 
models. 

Using the extended model to discriminate between multiplicative and 
additive models involves fitting a non-standard regression model for each 

of a range of values of p. Even with software which allows non-standard 
models this can be quite a lot of work. 

28.3 Additive models with case-control studies 

There are some special problems which arise when trying to fit additive 

models to data from case-control studies. To illustrate these we shall con¬ 

sider a case-control study of the joint effect of two exposures A and B in 
which the ratio of sampling probabilities is 

K _ Probability of selecting a failure as a case 

Probability of selecting a survivor as a control 

We showed in Chapter 23 that parameters which are defined as ratios of 

the odds of being a case are also ratios of the corresponding odds of failure 

in the study base. Unfortunately this does not apply to additive models. 

Parameters which are defined as differences in the odds of being a case 

are K times the corresponding differences in the odds of being a failure in 

the study base. The factor K, which relates the odds of being a case to 

the odds of faliure, cancels in ratios but not in differences. It follows that 

fitting an additive model to case-control data tells us nothing about the 

additive effects on the odds of failure in the study base except in those rare 

cases where the value of K is known. It is still possible, of course, to test 

hypotheses about zero parameter values since a zero additive effect on the 

odds of being a case corresponds to a zero additive effect on the odds of 

being a failure in the study base. 
Although it is not possible to estimate the additive effects of A and B 

on the odds of failure in the study base it is still possible to estimate the 

ratio of these effects to the corner. This is less satisfactory than estimating 

differences in the odds themselves, but better than nothing. These new 

parameters are estimated by fitting the model 

Odds = Corner x (1.0 + A -f- B). 

When the model is written in this way the corner parameter is still the 

odds of being a case when A and B are at level zero, but the A and B 

parameters are now differences in the ratio 

Odds 

Corner 
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Table 28.1. Estrogen replacement, weight, and endometrial cancer 

Weight 

(kg) 

Estrogen replacement 

No Yes 

Cases Controls Cases Controls 

< 57 12 183 20 61 

57-75 45 378 37 113 

> 75 42 140 9 23 

This model can be fitted to data using likelihood in the same sort of way 

as for conventional models but special software is required. 

Exercise 28.1. Table 28.1 shows results of a case-control study relating endome¬ 

trial cancer incidence to use of estrogen therapy and body weight. Calculate odds 

ratios for each category of weight and estrogen use relative to the corner (top left 

corner cell). Obtain differences in these odds ratios for estrogen replacement yes 

compared to estrogen replacement no, at each level of weight. Do the data appear 

consistent with an additive model? 

When a case-control study is stratified by age at time of diagnosis, and 

controls are sampled separately in each age stratum, there will be a different 

value of K for each stratum. To make sure the A and B parameters do not 

depend on these K's the parameters must now be defined as differences in 

the value of 
Odds 

Age specific corner’ 

where the age specific corners are the odds in each age stratum when A 

and B are both at level 0. The A and B parameters will then equal the 

corresponding differences in the ratio of the odds of failure to the age 

specific corners in the study base. 

Assuming that the new A and B parameters are constant over age 

strata, their common value can be estimated by fitting the model 

Odds = Corner x Age x (1.0 + A + B). 

where age is a categorical variable with one level for each age stratum. 

The Corner x Age part of the model corresponds to fitting separate cor¬ 

ner parameters for each age stratum. This model again requires special 
software. 

28.4 Discriminating between models using case-control studies 

The extended model containing the extra parameter p can also be used 

to compare the fit of a multiplicative model with an additive model using 
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data from a case-control study. The two models we wish to compare are 

Odds = Corner x A x B, 

in which A and B parameters are ratios of odds, and 

Odds = Corner x (1.0 + A + B), 

in which the A and B parameters are differences in the ratios of odds to 

the corner. The multiplicative model can also be written in the form 

log(Odds) = Corner + A + B, 

in which the A and B parameters are defined as differences in log odds. 

The extended model is now 

(Odds/Corner)p — 1.0 _ ^ ^ 

P 

As p approaches 0 this model approaches 

log(Odds/Corner) = A + B, 

which simplifies to 

log(Odds) = log(Corner) + A + B. 

This is the multiplicative model written in log form, apart from the fact 

that because the corner parameter is on the original scale in the extended 

model it appears as log(Corner). As p approaches 1, the extended model 

approaches 
Odds = Corner x (1.0 + A + B), 

which is the additive model. 
The procedure for comparing the fit of a multiplicative and an additive 

model is illustrated by fitting the extended model to the data in Table 28.1 

for a range of values of p. To actually do this involved fitting a non-standard 

model for each of these values. The resulting log likelihood ratios are shown 

in Fig. 28.2. At p = 0 the log likelihood ratio is -2.774 and at p = 1 it 

is -0.408. To test for the adequacy of the multiplicative model we take 

p = 0 as the null value. Minus twice the log likelihood ratio for p = 0 is 

5.548 (p ~ 0.02), so the data do not support this model. To test for the 

adequacy of the additive model we take p — 1 for the null value. Minus 

twice the log likelihood ratio for p = 1 is 0.816 (p > 0.10) so the data are 

consistent with the additive model. 
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P 

Fig. 28.2. The log likelihood ratio for p. 

The most frequent outcome when comparing the fit of multiplicative 
and additive models is that both provide an acceptable description of the 
data. This has been taken by some epidemiologists as a serious flaw in 
the modern modelling approach to statistical analysis, since additive and 
multiplicative models have radically different public health implications 
(notably in relation to the targeting of interventions). This difficulty is 
indeed serious, but it is attributable more to an attempt to extrapolate 
beyond the data than to any shortcomings in statistical methodology. 

A good example of this arises in attempts to study the implication of 
different dose-response relationships for the carcinogenic effect of ionizing 
radiation. The public health problem (if there is one) is one of relatively 
large populations exposed to low doses, but the available epidemiological 
studies have concentrated upon high exposure groups — A-bomb survivors, 
irradiated patient groups and so on. Additive and multiplicative dose- 
response models make similar predictions at high doses so these studies are 
poorly discriminated. However, they make very different predictions for 
subjects receiving low dose exposure. If data were available for subjects 
receiving low dose exposure the two models would be easily discriminated; 
the problem lies in trying to discriminate between them using data from a 
range of dose levels for which the two models make the same predictions. 

Exercise 28.2. We plan to reduce the total burden of disease in a community by 

attempting to eliminate exposure A but another explanatory variable, B, is also 

known to be important. Should the intervention be targeted on individuals whose 
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exposure to B is greatest? Consider how the answer to this question depends on 

whether the effects of A and B on the rate are additive or multiplicative. 

Solutions to the exercises 

28.1 The odds ratios are shown below. 

Weight 

(kg) 

Estrogen replacement 
No Yes Difference 

< 57 1.00 5.00 4.00 
57-75 1.82 4.99 3.17 

> 75 4.58 5.97 1.39 

The additive model does not appear to fit particularly well as the differences 

between the odds ratios for the two estrogen groups seems to fall with 

increasing weight. Further examination of the table suggests the possibility 

that there is only a relationship with weight when there is no estrogen 

replacement. 

28.2 Consider a population classified according to the two factors A and 

B. When these act additively or multiplicatively, the rates follow one of the 

following patterns: 

Additive model Multiplicative model 

A Potential A Potential 

B No Yes reduction No Yes reduction 

No 1 3 2 1 3 2 

Yes 3 5 2 3 9 6 

When the multiplicative model holds the reduction in rates by eliminating 

exposure A is greater in the B-Yes group than in the B-No group. It would 

therefore be cost effective to target intervention at the high- risk section of 

the population. When the additive model holds this is no longer the case 

— there is an equal potential reduction in both sections of the population, 

and targeted intervention makes little sense. 



29 
Conditional logistic regression 

In an individually matched case-control study, it is necessary to introduce a 

new parameter for every case-control set, if the matching is to be preserved 

in the analysis. This means that the number of parameters in the model 

exceeds the number of cases and in this case the profile likelihood does 

not lead to sensible estimates. Instead the nuisance parameters must be 

eliminated using a conditional likelihood. In Chapter 19 we indicated how 

this is done for a simple binary exposure. In this chapter we show how to 

use a conditional likelihood with the logistic regression model. 

29.1 The logistic model 

Suppose we wish to fit a logistic regression model which contains param¬ 

eters for the case-control sets in addition to parameters for the effects of 

two explanatory variables A and B. Using a categorical variable to define 

the set to which each subject belongs, the model would be written 

log(Odds) = Corner + Set + A + B. 

The model can also be written in the multiplicative form as 

Odds = Corner x Set x A x B. 

For the case where A has three levels and B has two levels, the parameters 

in this model are Corner, A(l), A(2), B(l), together with 

Set(l), Set(2), •••, Set{N - 1) 

where N is the number of case-control sets. These set parameters are those 

used in standard logistic regression models, but they are no longer the most 

convenient choice. It is now more convenient to choose a separate corner 

for each set, namely the odds parameter for each set when A and B are 

at level 0. The corner for the first case-control set is the corner parameter 

referred to above, the corner for the second case-control set is 

Corner x Set(l), 
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and so on. This corresponds to splitting the terms in the model into two 
groups, as follows: 

Odds Corner x Set A x B 

The first part of the model contains the separate corners, and these are the 

nuisance parameters to be eliminated, while the second part contains the 

effects of interest. When a conditional logistic program is used to fit this 

model the nuisance parameters are eliminated using conditional likelihood 

and estimates of the effects of A and B are reported. No estimates of either 

the corner or the set parameters are obtained in this method, so none can 

be reported. 

To see how the nuisance parameters are eliminated using conditional 

likelihood it is convenient to return to the algebraic notation for parame¬ 

ters using Greek letters. For any particular case-control set let the corner 

parameter be uc- Let the odds for any subject in the set be u>i, where 

i = 1,2,... , indexes the subjects within the case-control set, and write 

Wi — Si, 

so that 6i is the ratio of the odds for subject i to the corner odds. The 

way 0 is related to the effects of A and B is determined by the AxB part 

of the model. The corner parameter refers to subjects within the set with 

both A and B at level 0, so that the value of 0 for such subjects is 1. For 

subjects with A at level 1 and B at level 0, 

6> = A(1), 

for subjects with A at level 1 and B at level 1, 

0 = A(l) x B(1), 

and so on. 
To be specific about which case-control set is being referred to, the 

parameters should be written with superscripts f, as in 

, ,t _ ,t at 
ui — UC W 

where t = 0,1, 2,... refers to the levels of the variable defining set mem¬ 

bership. The parameters u)q correspond to the 

Corner x Set 

part of the model, and are the nuisance parameters to be eliminated. In 

the rest of this chapter we shall derive the contribution to the conditional 
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Subject 1 Subject 2 Probability 

Fig. 29.1. Disease status for two subjects in a case-control study. 

log likelihood for a single case-control set, and shall therefore omit the t 
superscript. The total log likelihood is found by adding the contributions 
from the single sets. 

29.2 The conditional likelihood for 1:1 matched sets 

First we derive the contribution for case-control studies with one case and 

one control in each set. The possible case or control status for any two 

subjects are represented as a probability tree in Fig. 29.1. Using the rela¬ 

tionship between odds and probability, the probabilities that subject 1 is a 

case or a control are ui\/and 1/(1 Tut) respectively. Similarly, the 

probabilities for subject 2 are u>2/[)--}-UJ2) and 1/(1+CU2). The probabilities 
of the outcomes for the pair of subjects are obtained by multiplying along 

branches of the tree in the usual way. The last column of the figure shows 
such probabilities, after writing 

uj\ — u;c#i, u) 2 = tuc02) 

and 

K = 
1 

1 T u)\ 1 + UJ2 

These probabilities refer to any two subjects from the study base. Con¬ 

ditional on the fact that one of the subjects is a case and the other is a 
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control, the probability that subject 1 is the case is 

Kuc0i _ 6i 

I\u)qQ\ T Kujc02 0\ -f- 62 

and the probability that subject 2 is the case is 

02/(0i+02). 

The contribution to the log likelihood of the case-control set is, therefore 

a 
0(for case) 

^(for case) "f” ^(for control) 

This way of writing the log likelihood makes it clear that it does not depend 

on the arbitrary numbering of the subjects in the pair but only on the 

expressions for 6 in terms of A(l), A(2) and B(l), the parameters to be 

estimated. The total log likelihood thus depends only on A(l), A(2), and 

B(l), and the nuisance parameters u>lc have been eliminated. 

Exercise 29.1. Table 29.1 shows the data for the first two case-control sets in 

a 1:1 matched study. The set variable indicates which set each subject belongs 

to, and case or control status is indicated using a variable taking the value 1 

for cases and 0 for controls. Illustrative parameter values for the multiplicative 

effects of the explanatory variables age and exposure, where age has three levels 

(< 55, 55 — 64, 65 — 74) and exposure has two levels, are shown below. 

Parameter Value 

Age (1) xl.5 

Age (2) x3.0 

Exposure (1) x5.0 

The corner is defined as unexposed and age < 55. Calculate the values of 9 

predicted by the model for these four subjects. Calculate the log likelihood 

contributions for the two sets. 

Before leaving the 1:1 case we shall verify that the method of obtaining 

the log likelihood described above gives the same answer as the method 

described in Chapter 19, for a binary exposure. The model is now 

Odds - Corner x Set x Exposure 

which has only one parameter, Exposure(l), apart from the nuisance pa¬ 

rameters. This parameter is the multiplicative effect of exposure and we 

shall refer to it as 0. The values of 9 for the case and control are determined 
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Table 29.1. Data file for a 1:1 matched case-control study 

Subject Set Case/control Age Exposure 
1 1 1 48 1 
2 1 0 64 if 
3 2 1 52 i 
4 2 0 70 i 

Table 29.2. Likelihood contributions for the 1:1 matched study 

Exposure 6 for case 6 for control Likelihood 

Neither 1 1 1/(1 + 1) = 1/2 

Both 0 0 0/(0+ 0) = 1/2 
Case only 0 1 0/(0+ 1) 

Control only 1 0 1/(1+ 0) 

by whether or not they were exposed. For example, if the case was not ex¬ 

posed then 6 = 1, while if the case was exposed then 6 = (j>. Similarly 

for the control. Table 29.2 sets out the four possible outcomes for each 

case-control set and the corresponding contributions to the log likelihood. 

The first two outcomes, in which the exposure status of case and control is 

the same, lead to log likelihood contributions which do not depend upon 

the parameter, and can be ignored. If Nx and N2 are the frequency of 

occurrence of the remaining outcomes, the total log likelihood is 

which is the same as we obtained in Chapter 19, except that here we have 
called the effect 0 rather than 6 to avoid confusion. 

29.3 The conditional likelihood for 1: m matched sets 

We now extend the above argument to sets with one case and m controls. If 

the sampling had not been carried out deliberately so as to obtain a single 

case and m controls in the set, the probability that subject 1 is a case and 
the remaining m subjects are controls would be 
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and making the substitutions 

— uJcOi 

1 T <-0\ 1 T tc>2 1 CJ3 

this may be written as Kuq9 1. Similarly, the probability that subject 2 

is a case and all other subjects controls is Kuc02, and so on. The sum of 

probabilities for all the outcomes in which one member of the set is a case 
and all other members are controls is 

Kloc(0i + 62 + #3 + ■ ■ ■) 

so that the conditional probability that subject 1 is the case is: 

K.!jJq9\ 6\ 

Kuc ($1 + 02 + 03 T • • •) 91 + 02 + 03 + • • • 

The contribution of one set to the log likelihood is, therefore, 

The total log likelihood is obtained by adding the contributions for all 

case-control sets. 
From the form of this log likelihood it is clear that the conditional 

approach does not allow estimation of multiplicative effects of variables 

used in matching. Since all subjects in the set share the same value for 

such a variable its multiplicative effect will cancel out in the ratio of 9 for 

the case to the sum of all 0’s in the case-control set. However, interaction 

terms involving matching variables can be fitted. For example, for a case- 

control study in which sex was one of the matching variables, the sex effect 

cannot be estimated but the parameters for interaction between sex and 

exposure can be, because they will not occur in all of the 0’s from the same 

case-control set. 

29.4 Sets containing more than one case 

The conditional argument can be generalized quite easily to allow for case- 

control sets containing more than one case, although the computation of 

the log likelihood may become rather lengthy. The idea is illustrated for a 

set containing two cases and one control. Fig. 29.2 shows the probability 

tree for case/control status of a set of three subjects. In three of the eight 

possible outcomes there are two cases and one control. The probabilities 

for these branches are written to the right of the figure, again using the 
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Subject 1 Subject 2 Subject 3 Probability 

Case 

Control 

Case 

Control 

Case 

Control 

Case 

Control 

K(uc)20\92 

#(wC)2M3 

K{U) c)20203 

Fig. 29.2. Sets with two cases and one control, 

abbreviation 

1 -\- U)\ 1 + U>2 1 + U>3 

Conditional on the observed outcome being one of the three with two cases 

and one control the probability that the cases are subjects 1 and 2 is 

K(uJc)2Oi02 _ 0J02 

K(u!C)29i92 + K(u)c)29i93 + K{uc)‘29293 9\92 + 9X93 + 9293 ' 

The log of this conditional probability is the contribution of the set to the 
log likelihood. 

It is easy to see how this argument can be extended to deal with any 

number of cases and controls in a set. For example, for sets of size 6 

containing 3 cases, the conditional probability that subjects 1,2, and 3 are 
the cases is 

_9\9293_ 

9\9293 + 9\929x + 9\929§ -+-••• 

The denominator contains a term for each of the 20 ways of selecting three 

subjects from 6, and does not depend on the way the subjects have been 
numbered. 
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Solutions to the exercises 

29.1 The values of 6 for the four subjects are: 

Subject Corner 
Multiplicative effects 

Age Exposure e 
1 1.0 x5.0 5.0 
2 1.0 xl.5 1.5 
3 1.0 x5.0 5.0 
4 1.0 x3.0 x5.0 15.0 

Subject 1 is the case in the first set and subject 3 is the case in the second 

set. The log likelihood contributions are, therefore 

, / 5.0 \ , / 5.0 \ 

Iog)+ log (hit+uo ) = -a262 -L386- 



30 
Cox’s method for follow-up studies 

When using Poisson regression models to analyse data from follow-up stud¬ 

ies, time is divided into fairly broad bands such as 5 or 10 years of age. 

Age is the most common time scale but in some applications other time 

scales may be more relevant. This point is discussed in more detail in the 

next chapter, but for the moment we refer to the time scale simply as time. 

Cox’s method is very similar to Poisson regression but is based on a much 
finer subdivision of time. 

30.1 Choosing parameters 

When there are two explanatory variables, A and B, and the rate is allowed 

to vary with time, the multiplicative model for the rate takes the form 

Rate = Corner x Time x A x B. 

Here time is a categorical variable with one level for each time band. Again 
we split the model into two parts, as in 

Rate = Corner x Time x A x B 

Algebraically this corresponds to a reparametrization of the model as 

A- = A 

where is a corner parameter measuring the rate for time band t when 

A and B are both at level 0, and 6i is the rate ratio which compares the 

rate for subject i, in time band t, to the corner rate for that time band. 
The parameters A£. correspond to the 

Corner x Time 

part of the model and the parameters Oi to the 

A x B 

part of the model. 
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30.2 The profile likelihood 

The parameters are also called the baseline rates, and are generally 

nuisance parameters. The main interest is in the parameters of the second 

part of the model. The profile likelihood for the parameters in the second 

part of the model is obtained by deriving formulae for the most likely values 

of the nuisance parameters, A^, and substituting these into the expression 

for the log likelihood. The number of nuisance parameters depends upon 

the number of time bands into which the total study period has been par¬ 

titioned. For the present we shall consider a finite number of bands, but 

in the next section the argument is generalized to the case where time is 
divided into clicks. 

The contribution of subject i to the log likelihood is the sum of contri¬ 

butions for each time band. These have the Poisson form: 

where y\ is the observation time in time-band t and d\ indicates whether 

the event occurred (d = 1) or not (d = 0). The total log likelihood is the 

sum of such terms over all subjects (i) and all time bands (£). Rewriting 

A* as Athis becomes 

K log(Ac0i) - v\^i] ■ 

The rules of calculus show that, given the 0;, the most likely values of 

the baseline rates A^ are 

where d? represents the total number of events occurring in time band t. 

Substituting these values into the expression for the log likelihood yields a 

profile log likelihood which depends only on the parameters in the second 

part of the model. This is 

30.3 Time divided into clicks 

The profile log likelihood derived by stratifying the follow-up interval into 

bands provides a satisfactory method for regression analysis of cohort stud¬ 

ies, but although this is the approach used with frequency records it is rarely 

used with individual records. The reason for this is that a further gener¬ 

alization offers increased flexibility without seriously compromising either 
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statistical or computational efficiency. In this generalization the time scale 

is subdivided into clicks which can contain no more than one event, thus 

allowing rates to vary continuously over time. 

The consequence of this generalization for the profile log likelihood are 

quite minor. First consider the effect upon the observation times, y\. If the 

duration of the time bands is h and we allow h to become very small, almost 

every y\ will become either zero (if subject i was not observed at click t) 

or h (if subject i was observed). In these circumstances, it is convenient to 

redefine y\ to be at risk indicators taking on the values 0 or 1 respectively. 

The observation times then become hy\ and the profile log likelihood for 
the rate ratio model becomes 

H lo§ 
jd 

0., 
£* hv\ei 

which may be further simplified to 

Since the term Dlog(h) does not depend upon any parameters, it may be 
omitted. 

Examination of the profile likelihood equation shows it to be constructed 

of a sum of terms, in which cfc is a multiplier which takes on the value 1 for 

clicks in which an event occurs, and 0 everywhere else. Thus the profile log 

likelihood receives an additive contribution for every failure event. Each of 

these is the log of a ratio whose numerator is the rate ratio, 9j, predicted 

by the model for subject j in whom the event occurred (the case), and 
whose denominator, 

J2y*6i 
i 

is the sum of rate ratios, 0*, for those subjects under observation at t, the 
time of occurrence of the failure. 

The collection of subjects contributing to the denominator is known 

as the risk set for the observed failure. Using this terminology the profile 
likelihood can be written 

^ y log ( 0(for case) / ^ ^ 0 

Failures \ / Risk set 

The ratio in brackets is the conditional probability that, given a failure 

occurred in this set of subjects, it occurred in the case rather than in 

some other member of the risk set. The profile log likelihood therefore 
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Fig. 30.1. Composition of risk sets. 

corresponds exactly with the conditional log likelihood obtained for indi¬ 

vidually matched case-control studies, and analysis of a cohort study using 

the above profile likelihood is equivalent to its analysis as a matched case- 

control study in which each case is matched on time with all other members 

of the corresponding risk set. The composition of risk sets is illustrated by 

Fig. 30.1. The risk set for each failure contains all subjects whose observa¬ 

tion lines cross the appropriate vertical, including the subject in whom the 

defining event occurred. 
The recognition that this likelihood is a profile likelihood came some 

years after Cox’s original proposal of the method, in which he called it 

the partial likelihood.* This name has stuck, and is in general use, so we 

shall continue to use it, but we emphasize that partial likelihood is the 

profile likelihood for the parameters in the second part of the regression 

model when Cox’s method has been used to eliminate the parameters in the 

first half. Because a very large number of nuisance parameters have been 

eliminated — infinitely many, in fact, we have no right to expect that the 

partial likelihood will maintain the properties of likelihood. In the present 

application, however, it has been proved to behave the same way as a true 

*Cox originally used an argument identical to that we used in Chapter 29 for in¬ 

dividually matched case-control studies and referred to it as a conditional likelihood. 

There are, however, difficulties with this argument when applied in the present context. 

While each term which contributes to the log likelihood is indeed the logarithm of a 

conditional probability, the total is not. A later paper correcting this error introduced 

the term partial likelihood. 
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Table 30.1. A cohort of 10 subjects 

Subject Sex 
Entry to Study End of Study 

Date Age Date Age 
A F 13/ 6/65 29.3 31/12/89 53.8 
B M 23/10/72 25.2 31/12/89 42.4 
C M 3/ 3/59 22.1 31/12/89 52.8 
D F 10/10/67 32.2 31/12/89 54.4 
E M 2/ 1/60 33.1 4/ 7/79 52.6 
F M 9/ 1/75 42.1 31/12/89 57.1 
G F 5/ 8/53 35.2 3/10/68 50.4 
H M 10/10/69 27.0 31/12/89 47.2 
I M 2/ 3/62 44.8 31/12/89 62.7 

■J F 1/11/70 51.5 31/12/89 70.6 

likelihood as the amount of data increases. 
The composition of risk sets (and hence the results of the analysis) 

depend upon the choice of time scale for the analysis, as is demonstrated 
by the following exercise. 

Exercise 30.1. The data set out in Table 30.1 refer to 10 subjects from a cohort 

study. Subjects E and G died at the second date while the remaining eight 

subjects survived until the date of analysis (31/12/89). List the members of the 

risk sets for both deaths when the appropriate time scale is (a) calendar date (b) 

age (c) time since entry into the study. 

The difference between these analyses is that they represent three different 

models. In each case the Aq parameters represent variation of baseline 
rates along different time scales. 

30.4 Choice of time scale 

Our derivation of Cox’s method allows for time to be interpreted in the most 

appropriate manner for a particular analysis. Usually this will mean the 

time scale with the strongest relationship to failure rate. Regrettably it is 

still the case that some major software packages do not allow such flexibility. 

This reflects the fact that the method was motivated by problems of survival 

following medical treatment. In such studies the appropriate time scale is 

time since start of follow-up so that all observation of all subjects starts at 

time zero. In such studies, risk sets always become smaller (as a result of 
failure and censoring) as time advances. 

On other time scales there will be late entry of subjects (observation 

starting at time > 0) and risk sets may be supplemented by new entrants 

as time advances. In order to be able to select the most appropriate time 

scale for an analysis, the software must be capable of allowing for late entry. 
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30.5 Confounders other than time 

The confounding effect of time is allowed for by including time in the 

first part of the model. For example, taking age as the time variable, 

the multiplicative model 

Rate = Corner x Age x A x B 

includes the effect of age in the baseline rate parameters. The most obvious 

way to deal with another confounder, such as sex, is to include it in the 

second part of the model, as in 

Rate = Corner x Age x Sex x A x B 

This model assumes that the effect of sex is constant with age so that the 

baseline rates for males are a constant multiple of those for females. To 

extend the model to allow for different patterns of baseline rates for each 

sex, the interaction between age and sex must be included in the model. 

When the age scale is divided into clicks this interaction term involves a 

very large number of parameters, so it is best to absorb these parameters 

in the baseline rate part of the model, giving 

Rate = Corner x Age x Sex x Age-Sex A x B 

This model has the effect of allowing different sets of baseline rate param¬ 

eters for males and females. If we estimate these algebraically as before, 

we find that the profile likelihood for the rate ratio part of the model still 

has the form of a partial likelihood: 

'y ] l°g ( ^(for case) / /* ^ ^ 

Failures V / Risk set 

but the risk set is now restricted to contain only those subjects who (a) 

were under study at the time of failure of the case, and (b) belonged to the 

same sex as the case. Thus the analysis simulates a matched case-control 

study in which controls are matched to cases with respect to sex. 
This extension of Cox’s method is usually referred to as a stratified 

analysis, although more properly it should be referred to as doubly strati¬ 
fied — Cox’s method stratifies by time alone, while the extended method 
stratifies by both time and a further variable. In our example stratification 

is by age and sex. 

Exercise 30.2. Repeat Exercise 30.1 for an analysis which is to be stratified by 

sex. 

It can be seen from the last exercise that when an analysis is doubly strat- 
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ified the risk sets contain fewer subjects than when it is stratified on time 

alone. Rather unexpectedly, therefore, the effect of adopting a more compli¬ 

cated model is to reduce the amount of computation required to estimate 

the parameters of interest. Further stratification can be introduced but 

there is a limit. If a study is overstratified, some risk sets will contain 

only the case, there being no other subjects matching the case in respect 

of all stratifying variables. Such sets make no contribution to the profile 

likelihood, so the information from these events is lost. 

30.6 Estimating the baseline rates 

In some circumstances the dependence of rates upon time is of some inter¬ 

est, and we would wish to estimate the baseline rates, Xlc. In this section 

we shall show that the plot of the most likely estimate of the baseline rate 

against time turns out to be very similar in form to the Aalen- Nelson 
estimator introduced in Chapter 5. 

Given the values of the parameters in the second part of the model the 

most likely values of the baseline rates, A£., were shown in Section 30.2 to 
be 

dl 

E* y*A' 

where 0* is given by the second part of the model. When we divide time 

into clicks of duration h and redefine y\ to be 0 or 1 at-risk indicators, this 
expression becomes 

dl 

Ei hy\Qi' 

In most clicks no failure occurs, = 0, and the estimate of the rate is zero. 
In a click in which a failure occurs, d* = 1, the estimated rate is 

1 

^E * vW 

which becomes very large as h becomes very small. However, the cumulative 

baseline rate increases at each click by the amounts hX^, and the estimated 
values of these are either zero or 

1 

Ei y'A 

when a failure occurs. Thus the cumulative baseline rate is estimated by 

stepped curve with jumps at the observed failure times. This is called the 

Aalen-Breslow estimate and is illustrated in Fig. 30.2. The height of the 
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Time 

Cumulative 
baseline 

rate 

Fig. 30.2. The Aalen- Brcslow estimate of the cumulative baseline rate, 

jump at each failure time is now given by 

rather than by 

1 / (Number of subjects at risk) 

as in the simpler case discussed in Chapter 5. As noted there, examination 

of the cumulative rate plot allows us to assess the dependence of failure 

rate on time. 

Solutions to the exercises 

30.1 When date is the time scale, membership of risk sets is determined 

by whether or not the subject was observed at the date of occurrence of 

the death. The risk sets corresponding to the two deaths are as follows: 

Date of death Subjects in risk set 

3/10/68 

4/ 7/79 

A, C, D, E, G (case), I 

A, B, C, D, E (case), F, H, I, J 

The risk set corresponding to the death of subject G contains fewer indi¬ 

viduals since it occurred at a date earlier than some subjects had joined 

the cohort. 
When age is the time scale, risk set membership is determined by whether 

the subject was observed at the age at which the death occurred. The risk 

sets are now as follows: 

Age at death Subjects in risk set 

50.4 A, C, D, E, F, G (case), I 

52.6 A, C, D, E (case), F, I, J 

When time in study is the scale, the risk sets are as follows: 
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Time in study at death Subjects in risk set 
15.2 yrs A, B, C, D, E, F, G (case), H, I, J 
19.5 yrs A, C, D, E (case), H 

30.2 Since subject G is female and subject E is male, the risk set for 

the failure of G contains only female subjects and risk sets for the fail¬ 

ure of E contains only males. When date is the time scale, the risk sets 
corresponding to the two deaths are as follows: 

Date of death Subjects in risk set 

3/10/68 A, D, G (case) 

4/ 7/79_B, C, E (case), H, I 

When age is the time scale, the risk sets are 

Age at death Subjects in risk set 

50.4 A, D, G (case) 

52.6_C^E (case), F, I 

When time in study is the scale, the risk sets are: 

Time in study at death Subjects in risk set 
15.2 yrs A, D, G (case), J 
19.5 yrs C, E (case), H 



31 
Time-varying explanatory variables 

Cox’s method provides a convenient way of controlling for time in the 

analysis of follow-up studies. In its simple form the method assumes that 

other explanatory variables do not change with time. In this chapter we 

show how the method can be extended to allow for this. We also discuss the 

closely related problem of analysis strategies when rates vary in relation 

to more than one time scale, and draw attention to some dangers and 

difficulties. 

31.1 The model and the likelihood 

We have seen that Cox’s method amounts to dividing the multiplicative 

model for rates into two parts: 

Rate = Corner x Time A x B x 

The first part refers to the baseline rates while the second part specifies 

how the rate ratio 

Rate for subject i at time t 

Baseline rate at time t 

is related to the explanatory variables A, B, etc.. On a log scale 

log(Rate) = Corner + Time + A + B + 

In the simple form of the method 6i is assumed to be independent of time. 

The extension of Cox’s method with which we are now concerned allows 

the relationship between Oi and the explanatory variables to vary with time. 

This would be necessary, for example, when studying levels of hazardous 

industrial exposures in occupational studies and when studying changing 

treatments in long term follow-up studies of chronic disease aetiology. In 

deed most explanatory variables of interest to epidemiologists vary with 

time if follow-up is over a sufficiently long period. 
Allowing the rate ratio part of the model to change over time involves 



308 TIME-VARYING EXPLANATORY VARIABLES 

only a simple change to the contribution 

from each risk set to the partial log likelihood. Since the model now predicts 

different values of 9 at different times the contribution of each risk set must 

now be calculated using the values of 9 current at the time of occurrence 
of the failure. 

COMPUTATION 

When it comes to computing the likelihood and finding the values of pa¬ 

rameters which maximize it this simple change turns out to have major 

consequences, and computation times can increase by several orders of 

magnitude. To understand why the computation is so heavy it helps to 
look at the simpler version of Cox’s method to see why this does not in¬ 

volve heavy computations. There are two reasons. First, for any particular 

set of values for the parameters, the value of 9 only needs to be worked 

out once for each subject. Second, the value of 9 does not have to be 

calculated from scratch for each risk set because the equivalent term from 

the previous risk set can be updated by subtracting the values of 9 for all 

subjects lost to follow-up in the intervening period and adding the con¬ 

tributions of those newly joining the cohort. Other terms needed in the 

computation of gradient and curvature of the log likelihood can be updated 
in a similar way. 

When the model allows the rate ratios 9 to change over time a subject 

who appears in several risk sets can have different values of 9 in each. This 

means that not only must the values of 9 be re-calculated for each risk set 

but 0 and other gradient and curvature terms must be calculated from 
scratch. The result is that the computing time rises dramatically. 

Some reduction in computing time can be achieved by sampling the risk 

sets. The algebraic equivalence of the partial likelihood in Cox’s method 

and the conditional likelihood for matched case-control studies means that 

analyzing a cohort study using Cox’s method is the same as analyzing it 

as a case-control study in which each incident case is individually matched 

with a control set in which the controls are all other subjects under study 

at the moment of incidence. Since a case-control study which draws many 

controls for each case provides very little more information than one which 

draws only a few, we shall lose little by taking a random sample of controls 

drawn from each risk set rather than using the entire risk set. Sampling 

risk sets in this way creates what is called a nested case-control study. Such 

studies offer a number of practical advantages in addition to considerable 

computational savings and will be discussed further in Chapter 33. 
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Exposed -• 
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1 Time 

Unexposed 1-* 

Fig. 31.1. Changing exposure group. 

31.2 Changing exposure group 

One simple but important way in which an explanatory variable can change 

with time arises when a subject can change from being unexposed to being 

exposed group (or vice versa) during the course of follow-up (see Fig. 31.1). 

This is most easily dealt with by splitting the follow-up for such subjects 

into an unexposed part and an exposed part, and treating the parts as 

distinct subjects. The data can then be analysed using the simple form of 

Cox’s method in which the explanatory variables do not change with time. 

The validity of the analysis depends on a relatively strong assumption con¬ 

cerning the reasons for the change of exposure group, namely that transfer 

is unrelated to the subsequence probability of failure. If the transfer mech¬ 

anism operates in a way that selects particularly high or low risk subjects 

then subsequent comparisons will be distorted. This is another example of 

selection bias. More formally, it is required that transfer must be indepen¬ 

dent of subsequent failure conditional upon the values of all other variables 

in the model. If transfer and failure are both strongly related to age (say) 

there will be an overall association between transfer time and outcome, but 

this will not bias estimates of other effects providing there is no relationship 

between transfer time and outcome for subjects of the same age, and pro¬ 

viding the model takes proper account of the relationship between age and 

failure rate. Similar considerations apply when there are more than two 

categories of exposure or when the level of exposure varies continuously. 

Exercise 31.1. Subjects enter a heart transplant programme as unexposed 

on joining a waiting list for a transplant, and switch to the exposed group on 

receiving the transplant. Do you think the assumptions discussed above are 

likely to be met in this case? 

31.3 Time scales as explanatory variables 

Another very common form of time-dependent explanatory variable is an 

additional time scale. For example, in a clinical study in which survival 
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Age 

Fig. 31.2. Follow-up by age and time. 

is analysed largely in relation to time since diagnosis, it will usually be 

necessary to control the comparison of different treatments for the age of 

the subjects receiving them. For short studies this can be achieved by 

including age at diagnosis, which is fixed for every subject. When follow¬ 

up is over many years it is better to include age itself, which varies with 

time. Fig. 31.2 illustrates follow-up of a subject in which observation time 

is classified by time since diagnosis and age. The risk sets are determined 

by the times of occurrence of failures. Two such times are illustrated in 

the figure by narrow vertical bands. One corresponds to the risk set for 

the failure of the subject shown while the other is an earlier failure. The 

subject shown contributes to both risk sets, but is of a different age on the 
two occasions. 

One possible analysis would be to include time since diagnosis in the first 

part of the model, so that this is the time scale which is used to determine 

the risk sets, and to include age as a time varying explanatory variable in 

the second part of the model. This could be done either by dividing the 

age scale into 5- or 10-year bands and treating it as a categorical variable, 
as in 

log (Rate) rner -f- Time + Age + A + B + 

or by treating age as a quantitative and fitting linear effects, and possibly 
quadratic effects too, as in 

log(Rate) Corner + Time + [Age] + [Age-sq] + A + B -|- 
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When the partial log likelihood is formed for either of these analyses each 

risk set contributes a term of the form log(#/^$) where the values of 9 

for the subjects in the risk set are determined by the relationship between 

log(0) and the parameters in the second part of the model. As an example 

of this computational process consider the model 

log(Rate) = Corner + Time + Age + A + B 

where age has five levels, A has two levels and B has three levels. The 
parameters in the second part of the model are then Age(l), • • •, Age(4), 
A(l), B(l) and B(2). Now consider a particular subject who appears as a 
survivor in two risk sets, and suppose that at the time of the failure which 
defines the first risk set the subject is in age band 3, and at the time of the 
failure which defines the second risk set the subject is in age band 4. 

Exercise 31.2. Write down an expression, in terms of the parameters, for the 

values of log(0) for this subject, in the two risk sets. 

When there are two time scales a natural question to be considered is 

which should be included in the baseline rates part of the model and which 

should be included in the rate ratio part. The choice depends on the way 

that rates vary along each time scale. If this variation is to be modelled in 

the rate ratio part of the model then we must either divide the scale into 

broad bands or fit simple mathematical functions of time, such as linear or 

quadratic. The former strategy is adequate if the variation of rates is not 

too rapid, while the latter is only possible if the variation is regular enough 

to describe by simple mathematical functions. If variation is both rapid 

and irregular neither approach works very well and the variation should be 

modelled in the baseline rates. Thus if it is suspected that variation along 

one scale will be rapid and irregular this should be the scale whose effects 

are modelled by the baseline rates, and other scales should be treated as 

time varying explanatory variables. If variation is smooth along all scales 

it is better to use the scale with the strongest effects for the baseline rates. 

Exercise 31.3. Discuss appropriate strategies for modelling the effects of age 

and calendar time on incidence of (a) a chronic degenerative disease, and (b) an 

infectious disease. 

31.4 Dependencies between time scales 

Different time scales are not truly different variables but the same variable 

measured from different origins. It is therefore impossible for a subject 

to advance one year on one scale without simultaneously advancing one 

year on other time scales. For example, we cannot pass through a year 

of calendar time without advancing a year in age — would that we could! 

This dependency between time scales can lead to difficulties when trying 

to interpret the estimated effects of changes on these time scales. 
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As an illustration we shall return to the example of age and time since 

diagnosis in a clinical follow-up study. Let us first consider the model 

log(Rate) = Corner + Time + [Age-at-diagnqsis] + 

in which the effect of time since diagnosis is the main time scale and is 

included in the first part of the model, while age at diagnosis is included 

as a linear effect in the second. The parameter [Age-at diagnosis] measures 

the change in the log rate per one year change in age, holding time since 

diagnosis constant at any arbitrary value. Fig. 31.3 shows two subjects who 

are diagnosed at ages 47 and 61 respectively; if we assume these subjects 

have the same values for any other explanatory variables the difference in 

log rate predicted by the model, at diagnosis, or at any value of time since 
diagnosis, is 

(61 - 47) x [Age-at-diagnosis] = 14 x [Age-at-diagnosis]. 

Now consider the model 

log (Rate) Corner + Time [Age] 4- 

in which age varies with time. The two subjects in Fig. 31.3 have a 14 

year age difference at diagnosis, so this model predicts a difference in log 

rates between the two subjects of 14 x [Age] at diagnosis. Because these 

two subjects have a 14 year age difference not only at diagnosis but at any 

time after diagnosis, the model also predicts a difference of 14 x [Age] at 

any value of time since diagnosis. Thus both models predict a constant 

difference in log rate at any value of time since diagnosis. In the one 

case the prediction is 14[Age-at-diagnosis], in the other the prediction is 

14 x [Age]. This is true for any pair of subjects; the models make identical 

predictions and cannot be differentiated, the [Age-at-diagnosis] parameter 

in the first model is making the same comparison as the [Age] parameter 
in the second. 

There may well be scientific interest in discriminating between models 

in which the age at diagnosis determines prognosis, and models in which 
age itself is the determinant, but if we were to fit the model 

log(Rate) — Corner + Time + [Age] + [Age-at-diagnosis] + • • • 

in order to try and separate the linear effect of age controlled for time since 

diagnosis from the linear effect of age at diagnosis controlled for time since 

diagnosis, we would run into difficulties. When time since diagnosis and 

age are held constant, there can be no further variation in age at diagnosis 

so that the [Age-at-diagnosis] parameter cannot be estimated. Likewise, 
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Age 

Fig. 31.3. Observation of two subjects. 

time since diagnosis and age at diagnosis uniquely determine age so that 
the [Age] parameter cannot be estimated. Again the two subjects shown in 
Fig. 31.3 demonstrate the problem. The new model also predicts that the 
difference in log rates remains constant at any value of time since diagnosis 

but this difference is now equal to 

14 x [Age] + 14 x [Age-at-diagnosis] = 14 x ([Age] + [Age-at-diagnosis]), 

where the parameters [Age] and [Age-at-diagnosis] now refer to the new 
model which contains both linear effects. Because any values for the two 
parameters which have the same sum, make the same predictions, the 
parameters cannot be estimated individually. They are said to be non- 

identifiable or aliased. 
A computer program will usually warn the user when two parameters 

are non-identifiable and then omit one of them from the model. This is 
quite useful when the object is to control for age and age at diagnosis, but 
if the object is to disentangle their effects, what the computer piogiam is 
saying is that we are attempting the impossible. 

The non-identifiability of parameters for different time scales refers to 
their linear effects. When we come to fit models with non-linear terms, 
things are not so bad. Consider for example the predictions of the model 

log (Rate) Corner + Time + [Age] + [Age-sq] H- 
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for the two subjects shown in Fig. 31.3. At the time of diagnosis the model 
predicts a difference in log rates of 

(61 — 47) x [Age] + (612 — 472) x [Age-sq] = 14 x [Age] + 1512 x [Age-sq]. 

However, 5 years after diagnosis, their ages are 66 and 52 and the model 
predicts a difference in log rates of 

(66 — 52) x [Age] + (662 — 522) x [Age-sq] = 14 x [Age] + 1652 x [Age-sq]. 

In the model with non-linear effects, therefore, the difference between log 

rates for the two subjects does vary with time since diagnosis. The model 

log(Rate) = Corner + Time + 

[Age-at-diagnosis] + [Age-at-diagnosis-sq] -|- 

predicts a difference in log rates of 

(61 - 47) x [Age-at-diagnosis] + (612 - 472) x [Age-at-diagnosis-sq] 

throughout the follow-up, and this is a different prediction than the one 

obtained from the model with age and age-squared. The linear parts of the 

two predictions are still the same and cannot be separately estimated, but 
the non-linear parts are different and can be. 

Similarly, if we were to fit the model 

log(Rate) Corner + Time + 

[Age] + [Age-sq] + [Age-at-diagnosis] + 
[Age-at-diagnosis-sq] -|- 

the parameters [Age] and [Age-at-diagnosis] are not identifiable while the 

parameters [Age-sq] and [Age-at-diagnosis-sq] can be estimated. The same 

is true for any other non-linear component of the relationships. 

[~*1 31.5 Discrete time bands 

In the above discussion the time variables are measured exactly; when the 

time scales are divided into discrete bands the position is slightly more com¬ 

plicated. To illustrate this we shall return to the two subjects of Fig. 31.3 

and imagine a model in which age has been grouped into 5-year bands but 

time since diagnosis is still measured exactly. At the beginning of follow¬ 

up one subject is in the 45-49 band and the other is in the 60-64 band. 

However, after three years the former subject has moved into the 50-54 
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band while the latter remains in the 60-64 band. It will appear to a com¬ 

puter program that the age difference between the subjects has narrowed! 

As a result the program will not spot the underlying non-identifiability of 

models such as 

log(Rate) Corner + Time + Age + Age-diag + 

and fit them without complaint. However, the linear components of the 

relationships with age and age at diagnosis have only become estimable 

because of the inaccuracy introduced by banding and the resulting param¬ 

eter estimates are uninterpretable. 

31.6 Modelling vital rates 

A familiar example of these problems arises in ‘age-period-cohort’ mod¬ 

elling of mortality and other vital rates, where the aim is to disentangle 

the dependence of rates upon age, calendar time (period), and date of 

birth (birth cohort). This comparison raises exactly the same problem as 

above and has provoked a lot of discussion in the epidemiological litera¬ 

ture. Much of this has been based on the misconception that the problem 

is a shortcoming of current statistical methods and that its solution awaits 

only methodological advances. This is not the case. The difficulty is in¬ 

escapable and arises from the fact that subjects cannot move in one time 

scale without an identical move in others. 
Fig. 31.4 shows a table in which both both age and calendar period have 

been divided into 10-year bands. Tables of rates, classified in this way, are 

frequently available from official published sources, and allow effects of year 

of birth (birth cohort effects) to be estimated approximately. If we remem¬ 

ber that observation of individual subjects is represented by diagonal lines 

in the age and calendar time Lexis diagram (illustrated by the arrow), it 

is clear that diagonal groupings of cells in the table correspond approxi¬ 

mately to birth cohorts. The cell labelled 0 refers to subjects born around 

1870, those labelled 1 to subjects born around 1880, and so on. Although 

this correspondence is only approximate, the new discrete codings for age 

period and cohort behave very much like the underlying continuous scales. 

In particular, they are linearly dependent. In our example, 

Cohort = 3 + Period - Age. 

This means that when two are fixed the third is also fixed and in models 

such as 
log(Rate) = Corner + [Age] + [Period] + [Cohort] 

the parameters are unidentifiable, and it is impossible to disentangle the 

linear effects of all three variables. 
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Period 

1945-54 1955-64 1965-74 1975-84 

Age (Band) (0) (1) (2) V (3) 

75-84 (3) 0 ✓ 1 2 3 

/ 
65-74 (2) 1 2 3 4 

55-64 (1) 2 3 4 5 

45-54 (0) 3 4 5 6 

Fig. 31.4. Approximate birth cohorts. 

Some investigators have returned to the raw data in order to allo¬ 

cate subjects to their true birth cohort. This avoids the approximation 

in Fig. 31.4 but leads to a serious fallacy. Fig. 31.5 shows how the exact 

birth cohorts move across the Lexis diagram. The cell labelled 0 refers to 

the 1860-69 birth cohort, those labelled 1 to the 1870-79 cohort, and so 

on. The discrete codings no longer behave like the underlying scales. For 

example, birth cohort 1 is observed in 3 cells; the transition from the first 

to the second involves a change of age band ( from 65-74 to 75-84) without 

change in calendar period, while the transition from second to third corre¬ 

sponds to a move through calendar time without change in age! Looked at 

naively it would appear that, by grouping, we have created a natural exper¬ 

iment in which subjects can age instantaneously and travel in time without 

ageing. The fallacy lies in the fact that the regions are triangular and that 

regions shaped 1/ disproportionately represent ages towards the upper end 

of the 10-year band and dates towards the lower end of the period, while 

regions shaped disproportionately represent ages at the lower end of the 

band and periods at the upper end. Unfortunately, computer programs 

have no way of knowing this. They will believe that a miraculous natural 

experiment has been observed, and estimate separate linear effects for all 
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Period 

1945-54 1955-64 1965-74 1975-84 

Fig. 31.5. Exact birth cohorts. 

three scales without complaint. This uncritical behaviour of computer pro¬ 

grams (which can’t know better) has been hailed by some epidemiologists 

and statisticians (who should) as a ‘solution’ to the identifiability ‘prob¬ 

lem’. The reverse is the case; the computer solution is fallacious, being 

based entirely on grouping inaccuracies, and the resultant estimates are 

uninterpretable. It is worth pointing out that this pitfall is not confined 

to the age-period-cohort problem, but can be encountered whenever more 

than one time scale is involved in an analysis. 

Solutions to the exercises 

31.1 When a heart becomes available for transplantation and there is 

more than one patient eligible to receive it, there is potential selection bias. 

A controlled study would randomize such choices to exclude selection bias, 

but in an observational study it will always be difficult to know whether 

the recipient was selected because the clinician felt that this patient was 

most likely to benefit. Such selection would cause serious bias in a simple 

analysis. In theory this can be offset by including in the analysis any 

prognostic factors likely to have been used by the clinician making the 

decision, but in practice one can rarely be sure that all relevant factors 
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have been taken into account. We shall discuss this example in more detail 
in Chapter 32. 

31.2 For the first risk set 

log(0) = Age(3) + A(l) + B(2). 

For the second risk set 

log(0) = Age(4) + A(l) + B(2). 

31.3 Incidence rates of chronic degenerative diseases such as ischaemic 

heart disease' and most cancers rise steeply with age. In such diseases age 

may usually be thought of as a surrogate for the cumulative damage in¬ 

flicted by a large number of influences throughout life. Such cumulative 

damage will be reflected in a smooth increase of rates with age so that 

simple linear or quadratic models for the age effect are usually satisfactory. 

Grouping age by 5 or 10 year bands will also work quite well. Age rela¬ 

tionships for incidence of infectious diseases are usually more complicated. 

Increasing immunity with age will produce a smoothly decreasing curve, 

but where transmission of the infectious agent depends upon various social 

influences such as schooling, employment, sexual activity etc., these may 

give rise to rather irregular age curves. Simple mathematical functions for 

age-incidence curves are therefore less likely to be useful. Grouping may 

also be difficult because of abrupt changes in incidence due to age related 
changes in social behaviour. 



32 
Three examples 

This chapter describes three studies where the explanatory variables change 

with time and where the analysis has been helped by the statistical methods 

discussed in immediately preceding chapters. The first is a clinical follow¬ 

up study of heart transplant patients and has already been introduced in 

Exercise 31.1. The second is an epidemiological study into the effects of 

bereavement in old people. The third is concerned with the important 

problem of estimating the parameters of cancer screening programmes to 

help public health administrators in planning such services. 

32.1 Mortality following heart transplantation 

The first example concerns the survival of patients in the Stanford heart 

transplant program.* The basic nature of the data is illustrated in Fig. 32.1. 

The follow-up of patients starts as soon as they are enrolled in the program 

to await a suitable heart. In this phase of the follow-up, patients are in the 

pre-transplant state. When a heart becomes available, and if selected, trans¬ 

plantation takes place and the patient transfers into the post-transplant 

state. The diagram shows two patients, one of whom dies some time after 

transplantation while the other dies while awaiting a suitable heart. 

The diagram also indicates (by the two vertical lines) a stratification 

by time in programme. In this time band there is some person-time pre¬ 

transplant and some post-transplant. This allows comparison of mortality 

in post-transplant patients with that in controls who are still awaiting 

transplantation. The possible biases in this comparison were the subject 

of Exercise 31.1. Here we are more concerned with the mechanics of the 

analysis. In this comparison it would be necessary to control for such vari¬ 

ables as age (either itself, or at enrollment into the programme), date when 

enrolled, date when transplanted, and prognostic factors such as record of 

previous surgery. Multiplicative models fitted using Cox s method can be 

used to do this. 

‘Crowley, J. and Hu, M., Journal of the American Statistical Association, 72, 27-36. 
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Fig. 32.1. Mortality following heart transplant. 

These models are based on the assumption that 

Mortality rate for transplanted patient 

Mortality rate for untransplanted patient Constant, 

that is, the rate ratio does not vary either with time since entry into the 

program or with time since transplantation. The latter seems very unlikely. 

We might even expect an initial adverse effect of transplantation (rate 

ratio greater than 1) which would later be replaced by a beneficial effect 

(rate ratio less than 1). The assumption can be relaxed by allowing the 

transplantation effect to vary with time since transplantation — a variable 

whose evolution over time can be demonstrated by adding a further axis 
to the follow-up diagram, as in Fig. 32.2. 

Exercise 32.1. Time since transplant can be included in the model for the 

rate ratio in a number of ways. Perhaps the simplest is to include time since 
transplant as a quantitative variable as in 

log(Rate) = Corner + Time + Transplant + Transplant • [Time-since-transplant], 

where time is time in program. What signs would you expect for the two pa¬ 

rameters of this model? Sketch the graph showing how the rate ratio would vary 

with time since transplant in this model. (You should assume that Time-since- 
transplant is coded zero until transplantation occurs.) 

Other potential effect modifiers are age at transplantation, time spent 

awaiting transplantation, and closeness of matching of tissue type with 
the donor. 

32.2 Bereavement in the elderly 

The second example is drawn from a study of the effect of bereavement 

(death of spouse) in an elderly population.! There is some empirical evi- 

tjagger, C. and Sutton, C.J., Statistics in Medicine, 10, 395-404. 
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Pre-transplant 

Fig. 32.2. Incorporating time since transplantation. 

dence that, for a period following the death of a spouse, the mortality rate 

of the surviving partner is elevated. Fig. 32.3 shows a plausible relation¬ 

ship between mortality rate, expressed relative to mortality in persons with 

surviving partners, and time since death of spouse. Such a relationship can 

be modelled by a simple function such as 

Rate ratio = a + /3exp(—yf), 

where a, (3, and 7 are parameters. At t = 0 the rate ratio is a + /3 and, with 

the passage of time since bereavement, it falls away to a. The parameter 

7 controls how soon the rate ratio dies away. 
Fig. 32.4 shows follow-up of four subjects in a cohort study by calendar 

time and by time since loss of spouse. Before bereavement, subjects are fol¬ 

lowed through time, thus allowing measurement of baseline mortality rates. 

Following death of a spouse, observation may be represented by diagonals 

in the Lexis diagram formed by plotting calendar time against time since 

bereavement. Our diagram shows the pattern of observation of two cou¬ 

ples. For the sake of clarity, the diagram has been simplified by omitting 

age, although this must be included in the analysis. In a fuller representa¬ 

tion, observation of subjects with living spouses would be represented by 

lines in an age by calendar time Lexis diagram, while bereaved subjects 

would be represented by lines in a three-dimensional diagram formed by 

age, calendar time and time since bereavement. 
The analysis of this study must relate mortality rates to all three time 
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Fig. 32.4. A study of mortality following bereavement. 
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scales. The effect of time since bereavement is modelled by 

Rate ratio = a + /?exp(—71), 

which describes the relationship using three parameters. For modelling the 

effects of age and calendar time, all three possibilities discussed in Chap¬ 

ter 31 are open to us. A frequent recommendation is that the scale used in 

the construction of risk sets should be that with the strongest relationship 

with event occurrence, and this would argue for age being dealt with in 

this way. However, mortality in the elderly also varies quite markedly with 

calendar time, owing to climatic fluctuations, influenza epidemics, and so 

on. While the age relationship is a smoothly increasing function and may 

easily be modelled by a linear or quadratic function, the relationship with 

calendar time is very irregular. It follows that a better strategy is to take 

calendar time as the scale for definition of risk sets, and to include age in 

the model as a time-dependent continuous quantitative variable. 
Fig. 32.4 illustrates the construction of the risk set in calendar time. 

The risk set corresponding to each death consists of all those subjects 

under study in the time slice containing it — illustrated by the vertical 

band in the diagram. Two of our four subjects belong to the indicated risk 

set — one as the case. At the relevant date, both have been bereaved and 

the model would assign them different values of 0 (> 1.0) according to the 

time since their bereavement. 
The analysis could also be carried out by creating a nested case- control 

study by sampling risk sets. This possibility also suggests the design of a 

true case-control study. 

Exercise 32.2. Describe a case-control study into mortality following bereave¬ 

ment which mirrors the analysis described above. What sources of bias can you 

foresee? 

32.3 Estimating the parameters of a screening test 

Our final example concerns the estimation of the parameters of a cancer 

screening programme.^ The aim of such programmes is to detect cancer 

during the preclinical detectable phase (PCDP) the period, prior to the 

time at which the disease would have been detected symptomatically, dur¬ 

ing which there is some possibility of detecting the disease by screening. 

Two parameters which it is important to know are the sojourn time (the 

name given to the duration of the PCDP) and the sensitivity, defined as the 

probability of detecting disease by screening during the PCDP. We shall 

denote these parameters by r and tt respectively, so that vr is the proba¬ 

bility that screening would detect the disease if applied within a period of 

tDay, N.E. and Walter, S.D., Biometrics, 40, 1-14. 
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duration r before the time at which the disease would have been discovered 
anyway. 

Interpretation of these parameters and comparisons between different 

population groups and screening tests requires some care. In general, a 

better test will lead to increases in both n and r. More rapid development 

of tumours will be reflected in decreased values for r, since the disease will 

move through the PCDP more quickly. Finally, r will also be affected by 

factors which determine rapidity of diagnosis in the absence of screening, 

so that populations with better access to medical services will usually have 
smaller values for r. 

We shall now show how these parameters may be estimated from stud¬ 

ies of interval tumours incident cases detected by normal clinical means 

in the intervals between screening appointments. Let us consider the ex¬ 

pected variation of incidence following a negative screening test under our 

simple model, assuming first that the test is 100% sensitive (i.e. n = 1.0). 

In this case, there would be zero incidence of interval tumours for a period 

of length r following the negative screen, since all the tumours which would 

have arisen in this period will have been detected at screening. Conversely, 

after a time r has elapsed since screening, the rate of diagnosis of interval 

tumours will return to the normal incidence rate in an unscreened popu¬ 

lation, since no tumour detected in this period could possibly have been 
found at the screening appointment. Thus, the rate ratio 

Incidence rate of interval tumours following negative screening test 

Incidence rate in the unscreened population 

will be 0 until time r following screening, and then jump to 1. Making 

allowance for less than 100% sensitivity leads to the relationship shown in 

Fig. 32.5; the proportion of the normal incidence seen in the period after 

screening is contributed by those cases missed by the screening test. 

This model is clearly oversimplified, and we would not expect to ob¬ 

serve anything so clearly defined in practice. A more realistic model may 

be obtained either by allowing for sojourn times to vary or, alternatively, 

allowing the sensitivity of the test to vary smoothly throughout the PCDP 

from zero up to n. These models are indistinguishable and lead to a pre¬ 

dicted incidence pattern such as is shown in Fig. 32.6. The curve shown is 

a simple exponential function of time elapsed since negative screen, 

The parameters of this curve, 7r and t, may be thought of as the sensitivity 
and mean sojourn time respectively. 

Fig. 32.7 illustrates observation of four subjects in a follow-up study. 
Three of these enter the study prior to having been screened but are 

Rate ratio = 1 — n exp 
Time since screen 
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Fig. 32.5. Incidence following a negative screen. 

screened during follow-up, while the fourth enters the study some time 
after a negative screening test. Two of the subjects subsequently develop 
interval tumours. In an analysis with calendar time as the major time scale, 

Time since screen 

Fig. 32.6. A more realistic evolution of incidence. 
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Time since screen 

Unscreened 

Fig. 32.7. A follow-up study of incidence following a negative screen. 

these cases will be compared with risk sets comprising all individuals under 
study at the date of diagnosis. In the diagram this is illustrated for the 
first case by the vertical band. It can be seen that all four of the indicated 
subjects fall into this risk set; one is still unscreened and is assigned 0 — 1 
by the model, while the other three have different times since their negative 
screening test and, for any values of r and n, a model such as that illus¬ 
trated by Fig. 32.6 assigns three different values of 0 to the others. Each 
interval tumour contributes similarly to the log likelihood, and computer 
programs may be used to maximize this with respect to r and n to obtain 
best estimates of these quantities. Approximate confidence intervals may 
be found in the usual way from the curvature of the profile log- likelihoods. 

Exercise 32.3. What assumption concerning selection of subjects for screening 

must hold for this analysis to yield unbiased results? 

The above discussion slightly over-simplifies the analysis. In particular, 
it will be necessary to allow for age in the model. As in our previous 
example, sampling risk sets to create a nested case-control study will avoid 
some computation, and also suggests a true case-control design. 

Exercise 32.4. Describe a case-control study to investigate sensitivity and so¬ 

journ time of a screening test for breast cancer. Would you expect to obtain 

approximately the same results as in a cohort study? 
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Solutions to the exercises 

32.1 The Transplant main effect measures the log rate ratio immediately 

following transplantation. We might expect this to be positive immediately 

after surgery, corresponding to an elevated mortality rate, but then to 

decrease with time, giving way eventually to a beneficial effect. In this 

case the interaction parameter would be negative. 

The predictions of the model in terms of the log rate ratio are shown in 

Fig. 32.8. The parameter a is the Transplant initial effect and is shown 

here as positive, indicating an adverse effect. The slope of the line is the 

Transplant-Time interaction parameter and is shown as negative. This 

model predicts that transplantation will have an increasingly beneficial 

effect with increased time from transplantation. The horizontal dotted line 

represents the level of mortality in untransplanted controls. On the original 

scale, the rate ratio initially jumps to exp(a) immediately after transplant 

but then falls exponentially towards zero. 

32.2 The events of interest are deaths in elderly people, let us say those 

over 70 years of age. A geographically based case-control study would 

include as cases all such deaths amongst residents of a town or county. 

Each time such a death occurs, a set of controls would be drawn from the 

study base. Matching of controls to cases for age and sex would improve 

the efficiency of the study. Information concerning vital status of spouse 

and, where appropriate, date of death of spouse, would be obtained ret¬ 

rospectively for all cases and controls. This study would run little risk of 

information bias, since the relevant data are on public record. However, 

selection bias could be a problem. These are some of the problems: 

• A suitable, accurate, sampling frame may not be available. 

• Refusal to participate by potential controls could lead to ‘volunteer’ 

bias in the control group finally obtained. 

• Migration away from the sampling frame as a result of bereavement 

is a very real possibility. A bereaved old person may not be able to 

care for him or herself and might be forced to go into residential care 

or to live with relatives. 

These problems do not exist when a cohort of identified subjects is followed 

prospectively. 

32.3 It must be assumed that individuals selected for screening would 

have the same subsequent incidence rates as those not selected. This as¬ 

sumption would not be violated by a screening policy which varies with age, 

providing confounding by age is dealt with in the analysis. However, if pa¬ 

tients are referred to screening as a result of early non-specific symptoms, 

there would be some bias. 
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32.4 A population based screening programme requires a computer reg¬ 

ister to generate screening invitations, so this register can form the study 

base. The study would be of newly diagnosed cases who were not diag¬ 

nosed as a result of routine screening and whose names could be found on 

the computer register. Controls for each case would then be drawn from 

this register. If carried out carefully, it is difficult to see any reason why 

such a study should give different answers from a cohort study. Indeed, the 

existence of the computer register means that the study is really nested 
within a cohort study (see Chapter 33). 

0 Time since transplant 

Fig. 32.8. Log rate ratio against time since transplant. 
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Nested case-control studies 

Any cohort study can be used to generate a case-control study by sampling 

the cohort for controls to use in place of the full cohort. The case-control 

study is then said to be nested in the cohort study. For each case the 

controls are chosen from those members of the cohort who are at risk at that 

moment, in other words from the risk set defined by the case. Although the 

idea of nested case-control studies predates Cox’s method for the analysis 

of cohort studies, the design and analysis of such studies has been greatly 

clarified by the ideas of partial likelihood and risk sets. 

33.1 Reasons for using a nested case-control study 

The main reason for using a nested study is to reduce the labour and cost 

of data collection by collecting complete data only for those subjects who 

are chosen for the nested study. For example, in cardiovascular epidemiol¬ 

ogy the habitual energy expenditure of subjects has been measured using 

detailed diary records in which subjects record their physical activities in 

15-minute blocks. Coding these diary records into energy expenditure is 

time consuming and expensive, but with a nested case-control design this 

conversion is only needed for the cases and their controls. Similar con¬ 

siderations apply to coding diary records in cohort studies in nutritional 

epidemiology, and to expensive laboratory analyses on biological specimens 

— these can be collected for all subjects in the cohort but “banked” and 

analyzed only for cases and their controls. 
Another use of nested case-control studies is when an on-going cohort 

study is to be used to address a question about an exposure or con- 

founder not measured in the original design. Data collection can be re¬ 

stricted to those subjects in a nested study. For example, suppose that rou¬ 

tine health service monitoring data shows differences in mortality between 

groups of patients but, because information is not available on important 

confounders, it is not possible to exclude confounding as an explanation. A 

more detailed abstraction of medical records in a nested case-control study 

could make it possible to measure the confounders in the nested study and 

hence to control for them. 
The final reason for using a nested case-control study is to avoid the 

computational burden associated with time-dependent explanatory vari- 
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Fig. 33.1. Definition of risk sets. 

ables. This problem was discussed briefly in Chapter 31, where we indi¬ 

cated that a natural design for such studies is to randomly sample the risk 

sets on which a full analysis by Cox’s method would be based. In this 
chapter we discuss this suggestion in more detail. 

33.2 Sampling risk sets 

In nested case-control studies, controls are drawn for each case from the 
corresponding risk set. Fig. 33.1 shows the risk sets for a follow-up study 
of eleven subjects, four of whom fail. Corresponding to each of these four 
events is a risk set containing all those subjects under study at the moment 
of event occurrence — that is, all subjects whose observation lines cross 
the relevant vertical. To select controls we ignore the case and choose a 
random sample of the remaining subjects in the risk set. Sampling of a 
risk set must be carried out independently both of the sampling of other 
risk sets and of any later failure or censoring of its members. 

Exercise 33.1. What are the sizes of the four risk sets? Indicate how you would 
select a single control for each case. 

In the analysis of the full cohort study using Cox’s method, each of the 
events contributes a term of the form 
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to the log partial likelihood. When the risk sets are sampled this becomes 

which is identical to the log likelihood contribution of a matched case- 

control set in a conditional logistic regression analysis. 

CAN THE SAME SUBJECT BE INCLUDED MORE THAN ONCE? 

In the procedure for sampling risk sets described above the same subject 

can be selected as a control more than once and may eventually become 

a case. This will not happen very often for rare events but when it does 

it should be permitted. Any intervention in the sampling procedure to 

prevent its happening violates the requirement for independent sampling 

of risk sets. 
A second aspect of this question is illustrated by the fourth subject 

shown in Fig. 33.1 who belongs to all four risk sets. If this subject is 

drawn as a control in one of these risk sets it is tempting to use him 

or her as an extra control in the other sets. Including a subject in all 

samples for which he/she is eligible represents an extremely interdependent 

method of sampling risk sets. The result is that the successive terms which 

contribute to the partial likelihood are no longer independent — each term 

does not contribute quite as much new information as it appears. When 

this dependence is taken into account the expected gain in precision as a 

result of multiple use of controls largely evaporates. However, there may 
be other advantages. One is that, because controls are no longer tied to a 

particular risk set, they can be randomly selected at the time of recruitment 

into the cohort study. This design has been called a case-cohort study, 

and some logistic advantages have been claimed. One situation in which 

it might be considered is for studies in which several different types of 

event are of interest — for example, occurrence of several different cancers. 

Independent sampling of risk sets leads to a different set of controls for each 

type of event while the case-cohort design allows a single control sample 

to be used for all outcomes. Against this must be weighed the fact that a 

more complex analysis is required to take account of the interdependency 

in the sampling of controls. 

HOW MANY CONTROLS? 

If there are m times as many controls as cases, the precision of the case- 

control study compared to the cohort study is given by 

SD of estimate from case-control data 

SD of estimate from entire study base 
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This formula applies to the simple situation where the exposure effect is 

small and there is no control for confounding, but it can also be used as a 

rough guide more generally. Since \/l + 1/m is only slightly greater than 

1 for m > 5 little accuracy is lost by taking five or at most ten controls for 
each case, rather than the whole risk set. * * 

33.3 Matching 

In an occupational study of lung cancer, smoking will be a strong con- 

founder, and the comparison of occupational groups should therefore be 

controlled for smoking. An overall sample of (say) five controls per case 

could lead to a very different ratio within smokers and non- smokers. Since 

there will be many more cases among the smokers than among the non- 

smokers it is likely that there will fewer than five controls per case among 

smokers and many more than five per case among non-smokers. In such 

cases it would be better to match controls to cases with respect to smoking- 

habits. Of course, this requires that smoking data are available for the 
entire cohort. The contribution to the log likelihood now becomes 

where the ]T 6 denominator refers to summation over the case and the 

matched controls. Matching the controls to the cases on smoking does not 

allow estimation of the smoking effect, but when smoking is a confounder 
this need not concern us. 

[~*~1 33.4 Counter-matching 

In the previous section we discussed the situation where the values of the 

confounding variables are known for all subjects in the cohort and a nested 

case-control study is used to reduce the cost of measuring the exposure. 

Matching controls to cases on the confounding variables can improve the 

precision of the comparison of exposure groups although, as a side-effect, 

the effects of the confounding variables cannot be estimated. What about 

the opposite situation in which the exposure variable is measured for all 

subjects m the cohort and a nested case-control study is used to reduce 

the cost of measuring the confounding variables? In this case it would be 

disastrous to match the controls to the cases on exposure since we would 

then be unable to estimate the effect of exposure. However, the informa¬ 

tion available for the full cohort can still be used to sample controls more 
efficiently. 

To illustrate this we consider first the case in which all subjects are 

classified as exposed or unexposed. For any particular risk set let the 

numbers of exposed and unexposed subjects be Nx and N0 respectively, 

and suppose we are to draw vn controls. The nested case-control set will 
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contain n — m + 1 subjects (the case plus m controls). Let the split of 

these n subjects between exposed and unexposed be ni and no- When 

controls are drawn by simple random sampling of the risk sets this can 

produce a very uneven split of exposed and unexposed subjects and lead 

to inefficiency. The efficiency of the study can be improved by fixing the 

split in advance — usually to be 50:50. 

For example, suppose that there are 10 exposed and 100 unexposed 

subjects in the risk set and we wish to select a sample of 5 exposed and 

5 unexposed, including the case which defines the risk set. If the case is 

exposed this means we need 4 exposed controls and 5 unexposed controls. 

If the case is unexposed we need 5 exposed controls and 4 unexposed con¬ 

trols. For a sample of one exposed and one unexposed an exposed case will 

always be paired with an unexposed control and an unexposed case with an 

exposed control. It is from this that the term counter-matching is derived. 

When sampling in this way the contribution of each risk set to the 

partial log likelihood must be adjusted to reflect the fact that the exposure 

distribution in the sample is different from the exposure distribution in the 

risk set. The modified log partial likelihood contributions take the form 

log (V%or case) E 
Case-control set 

5 

where W are risk weights for each subject which compensate for the sam¬ 

pling. These weights take the values 

_ f Ni/ni for an exposed subject 

— \ No/no for an unexposed subject. 

Note that the choice of weight depends only on exposure status and not 

upon whether the subject is a case or a control. 

Exercise 33.2. What are the weights for exposed and unexposed subjects in a 

risk set with Afi = 10 exposed subjects and No — 100 unexposed subjects, in a 

1:1 counter-matched study? 

Exercise 33.3. For the special case where there are no confounders 9 takes the 

value 1 for an unexposed subject and the value (f) for an exposed subject, where 

4> is the (multiplicative) exposure effect. Show that, using the correct weights, 

the partial log likelihood contribution for the 1:1 sampled set is identical to the 

contribution of this risk set to the full cohort analysis. 

The design and analysis extends readily to the case where there are 

more than two exposure categories. If the risk set contains N{ subjects in 

exposure category i and the case-control set is to contain ni, then we draw 

either n* - 1 or R* controls at random according to whether or not the 
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case falls into this category. The risk weight for subjects in this category 
is Ni/rii. 

The same design and analysis may be used when exposure data is dif¬ 

ficult or expensive to collect, but in which we have a surrogate measure 

available for all subjects. If exposure is rare, it makes sfehse to use the sur¬ 

rogate exposure measurements to construct a more efficient nested study in 

which there is a more even split between exposed and unexposed subjects. 

In a 1:1 study, for example, a case classified as exposed by the surrogate 

measure would be paired with a control classified as unexposed, and a case 

classified as unexposed paired with a control classified as exposed. Remem¬ 

bering that in the 1:1 study only exposure discordant pairs are informative 

for the estimation of the exposure effect, this design is more efficient since 

it should increase the number of such pairs. 

An area in'which counter-matching by surrogate exposure measurement 

could prove particularly useful is pharmacoepidemiology. Exposure to any 

one drug is rare and can usually only be ascertained after detailed checking 

of medical records. However, a simple questionnaire might be very success¬ 

ful at identifying a subgroup particularly likely to have taken the drug of 

interest. The nested case-control study should contain all subjects in the 

group likely to have taken the drug, and a random sample of the remain¬ 

der. With this design, the introduction of the correct risk weights into the 

partial likelihood analysis provides a valid estimate of the drug effect. 

33.5 Two-stage sampling of controls 

Both matching and counter-matching require that some information is 

available for all subjects in the cohort. The general rule is that, when this 

concerns a confounder we should consider using it for matching controls 

to cases while, if it concerns an exposure of interest, we should consider 
counter-matching. 

Similar ideas may be useful even when we have no such data for the full 

cohort or, indeed, in a conventional case-control study. The information to 

be used in the final matching or counter-matching is collected in an initial 

study but complete data collection is only followed through in a subsample. 
This is known as a two-stage case-control study. 

Solutions to the exercises 

33.1 The risk set for the first event contains 10 subjects, the others con¬ 

tain 9, 7, and 4 subjects respectively. A control for the first case is selected 

at random from the remaining 9 subjects in the risk set. Similarly the 

remaining controls are sampled at random from the 8, 6, and 3 eligible 
subjects in the remaining risk sets. 

33.2 In the 1:1 counter-matched study each set contains n — 2 subjects, 
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1 exposed and 1 unexposed so that n\ = no = 1. The risk weights used in 

the analysis are therefore, 

_ f 10 for an exposed subject 

[ 100 for an unexposed subject. 

33.3 Suppose the case is exposed. Using the whole risk set the contribu¬ 

tion to the log partial likelihood is 

log _i_j. 
10 x <f> + 100 x 1) 

Using the 1:1 counter-matched design, the contribution to the partial log 

likelihood is 

log 
' (100) 
k(100)+(ioo) 

=log(10)+log 
_0_ 
10 x 0 + 100 x 1 

These two expressions are the same except for a constant term, log(10), 

which does not depend on 0 and can be ignored. The same is true when 

the case is unexposed. 
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Gaussian regression models 

Most of this book has been about events such as the incidence of disease or 

mortality. Although events are particularly important in epidemiology, in 

some studies the response of interest is a quantitative measurement such as 

blood pressure. The most widely used probability model for such responses 

is the Gaussian model, described in Chapter 8. In this chapter we show how 

regression models are used in conjunction with the Gaussian probability 

model. We shall call this combination Gaussian regression although it 

is moie usual for it to be called simply regression or multiple regression 

because it was developed before other regression methods. 

34.1 Models for the mean 

The Gaussian probability model differs from the binary model in having 

two parameters instead of one. These are p, the mean, and a, the standard 

deviation. In the simplest situation changing the level of an explanatory 

variable changes the value of p but leaves a unchanged. The distributions of 

response for a comparison of exposed and unexposed subjects predicted by 

such a model is illustrated in Fig. 34.1. The effect of exposure is measured 
by the difference between the means, px - p0. 

To contiol for confounding by age, using stratification, we would stratify 

by age and make the assumption that px — p$ is constant across age groups. 
This is equivalent to fitting the regression model 

Mean = Corner + Age -f- Exposure. 

The effect of exposure in this model is simply the (common) difference 

between mean responses for exposed and unexposed subjects within age 
groups. 

To illustrate such models we shall use some additional data from the 

study of diet and coronary heart disease. These concern daily intake of fi¬ 

bre which is the response variable. Age and occupation are the explanatory 

variables, both with three levels.* Table 34.1 shows a simple summary of 

these data in which a separate estimate of mean and standard deviation 

* Unpublished data 
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Unexposed Exposed 

has been calculated for each of the nine age-occupation groups. The main 

interest is in differences between occupations and inspection of the esti¬ 

mated means suggests that there is a systematic tendency for bank clerks 

to eat more fibre than the drivers and conductors. There is no obvious 

systematic variation in the standard deviation parameters, so the assump¬ 

tion that changing the levels of age and occupation does not affect a is 

reasonable. 
The additive regression model relating the mean daily intake of fibre to 

the effects of age and occupation is 

Mean = Corner + Age + Work. 

When both age and work are treated as categorical this has five parameters 

in all, namely the Corner, Age(l), Age(2), Work(l), and Work(2) param¬ 
eters. These are called the regression parameters to distinguish them from 

c. the common standard deviation, which is called the residual standard 
deviation. The square of o is called the residual variance. 

34.2 Likelihood, sums of squares, and deviance 

From Chapter 8, the log likelihood for a study of size N is 

1 ^r f X /X \ 
—iVTog(cr) — - J • 

Subjects 
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Table 34.1. Dietary fibre intake (gm/day) by age and occupation 

Age 
Occupation 

Bus driver Bus conductor Bank clerk 
< 45 N 23 16 38 

Mean 16.1 17.2 19.1 
SD 3.91 5.00 5.53 

45-49 N 30 29 57 
Mean 16.3 17.0 18.5 
SD 4.22 5.42 6.88 

50+ N 45 39 56 
Mean 16.6 14.8 17.6 
SD 6.28 4.48 5.43 

All N 98 84 151 
Mean 16.4 16.0 18.34 
SD 5.17 5.00 6.04 

However, in contrast with Chapter 8, the mean parameter /i is not a single 
constant but can vary from subject to subject according to the regression 
model. In our example /r can take nine different values according to the 
combination of age and occupation. For estimating the regression param¬ 
eters the Adog(cr) term in the log likelihood can be ignored, and because 
a is assumed to be the same for all subjects the parameter values which 
minimize the sum of squared differences, 

will also maximize the log likelihood, regardless of the value of a. Thus 
the most likely values of the regression parameters do not depend on a. 
Because they minimize a sum of squared differences they are also called 
least squares estimates. The minimum value which this sum of squared 
differences takes is known as the residual sum of squares. 

For example, Table 34.2 shows the parameter estimates for the model 

Mean = Corner + Work 

for the dietary fibre data. The table shows most likely values for the three 
parameters in this model, together with their standard deviations. The 
standard deviation of each regression parameter has been calculated from 
the profile log likelihood obtained by maximizing the log likelihood with 
respect to all the other regression parameters. Although the estimated 
values of these parameters do not depend on a their standard deviations 
do, and in constructing the table a has been taken equal to 5.5401 (we 



ANALYSIS OF DEVIANCE 339 

Table 34.2. Effects of work on fibre intake (gm/day) 

Parameter Estimate SD 

Corner 16.425 0.560 

Work(l) -0.402 0.824 

Work(2) 1.911 0.719 

shall see where this value comes from later in the chapter). 

Exercise 34.1. Use the results in Table 34.2 to find the 90% confidence interval 

for the Work(l) parameter. 

34.3 Analysis of deviance 

The deviance for any fitted model is defined as minus twice the log like¬ 

lihood ratio, when this compares the fitted model with a saturated model 

which has a parameter for each record. When the records refer to individual 

subjects the saturated model has fa = x so the deviance is 

This is proportional to the residual sum of squares for that model.^ As 

before, the degrees of freedom for the deviance are equal to the the number 
of parameters in the saturated regression model, which is equal to the 

number of subjects N, less the number of parameters in the regression 

model which has been fitted. These are also the degrees of freedom for the 

residual sums of squares. 
The deviance can be used to compare models in the same way as in 

Chapter 24, but all calculations are first done in terms of residual sums of 

squares and later converted to deviances by dividing by a suitable estimate 

of the square of a. The residual sums of squares are obtained from the 

analysis of variance table which is usually in the output when a Gaussian 
regression model is fitted. For example, the analysis of variance table 

produced when fitting the model 

Mean = Corner + Age + Work 

to the data in Table 34.1 would look something like Table 34.3. The most 

important line in this table is the middle one labelled ‘Error’ which gives 

tin the original definition of the idea of deviance, this was called the scaled deviance 
because of its dependence on the unknown scale parameter a and the word deviance 
wS Served for Its value when <r is takes as 1. However, this usage has not renewed 

widespread acceptance. 
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Table 34.3. Analysis of variance for the variable work 

Source DF SSq 
Model 2 369.891 
Error 330 10128.636 
Total 332 10498.527 

the residual sum of squares for the model which has been fitted and its 

degrees of freedom. Since the number of subjects is N = 333 and the 

regression model has three parameters, the degrees of freedom here are 

333 - 3 = 330. The last line of the table, headed ‘Total’ gives the same 
information for the degenerate model 

Mean = Corner 

in which the mean response is the same for all subjects. This regression 

model has only one parameter so the degrees of freedom for its residual 

sum of squares and deviance are 332. The line labelled ‘Model’ is obtained 

by subtracting the degrees of freedom and the residual sum of squares for 

the error and total lines. When this difference in residual sum of squares is 

converted to a difference in deviance by division by the square of a suitable 

estimate of a, it provides us with a test of the null hypothesis that all 

parameters in the model, other than the corner parameter, are zero. In 
this case this would be a test of the difference between occupations. 

With more than one explanatory variable, testing the hypothesis that 

all the parameters in the model are zero is rarely of any interest. The only 

use of analysis of variance tables for such models is to obtain the residual 

sum of squared deviations from the second line. By fitting a series of models 

a more useful table can be constructed, as follows. Table 34.4 shows the 

residual sums of squares extracted from the analysis of variance tables for 

five models fitted to the fibre data. Changes in residual sums of squares 

from one model to another can be converted to deviances and used to test 

a variety of hypotheses. For example, the effects of work controlled for 

age can be tested by using the change in residual sum of squares between 
models 3 and 4. 

ESTIMATING a 

Using the joint likelihood for the regression parameters and a it can be 
shown, using calculus, that the most likely value of cr is 

Residual sum of squares 

N 
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Table 34.4. Analysis of deviance (a = 5.5445) 

Mean = Corner + • • • DF SSq Deviance 

1. - 332 10498.527 341.510 

2. Work 330 10128.636 329.478 

3. Age 330 10384.702 337.807 

4. Age + Work 328 10048.456 326.870 

5. Age + Work + Age-Work 324 9960.268 324.000 

This is the value of a which maximizes the total likelihood and it therefore 

also maximizes the profile likelihood for er. When the number of regression 

parameters is large compared with the number of subjects, it is preferable 

to use a conditional likelihood which depends only on a, rather than the 

profile likelihood. The most likely value of a is then equal to the residual 

sum of squares divided by its degrees of freedom. For example, the value 

of a used throughout Table 34.4 was 

a = ^9960.268/324 = 5.5445 

which is the conditional estimate obtained from model 5, although the 

overall most likely value is 

a = ^9960.268/333 = 5.4691 

It can be seen that the use of the degrees of freedom in place of N has 

a negligible effect for a study of this size. The reason why a is generally 

estimated from the conditional likelihood can be illustrated by a simple 

argument. If we imagine a study of 10 subjects and fit a regression model 

with 10 parameters it will fit the observations exactly. The overall most 

likely value of <7 would be zero but the reality is that we have no data for 

estimating a. Only when we add an eleventh subject to our study do we 

start collecting information about a. It follows that the effective size of the 

study for the purposes of estimating a is given by the N minus the number 

of regression parameters — the degrees of freedom and the estimated 

value of a should be 

/ Residual sum of squares 

V Degrees of freedom 

One consequence of using this estimate is that the deviance for the model 

used to estimate a is equal to its degrees of freedom. 
A test for interaction between work and age may be obtained by com¬ 

paring the deviances for models 4 and 5. The difference in deviance is 

326.870 - 324.000 = 2.870 with 326 - 324 = 2 degrees of freedom. Re¬ 

ferring this to the chi-squared distribution shows this to be cleaily non- 
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Table 34.5. Effects of age and work on fibre intake (gm/day) 

Parameter Estimate SD 

Corner 16.430 0.560 

Age(l) -0.223 0.814 
Age(2) -1.118 0.788 

Work(l) -0.387 0.824 
Work(2) 1.828 0.720 

significant so that we are reassured concerning our assumption of constant 
occupational effects over age groups. 

The parameter estimates for model 4 are shown in Table 34.5. Note, 

however, that the value of cr used to calculate the standard deviations of 

the parameters is slightly different from that used in Table 34.4. This is 

because, whereas the estimate of a used in Table 34.4 was obtained from 

model 5, Table 34.5 refers to model 4 and it is therefore logical to estimate 
a using this model, that is by 

o' = ^10048.456/328 = 5.5349. 

The significance of the occupational effect, controlled for age, can be tested 
by comparing the deviances for models 4 and 3. However, since this test 
only makes sense when there is no interaction, deviances should properly 
be calculated using the model 4 estimate of a rather than that used in 
Table 34.4. 

Exercise 34.2. Carry out the test for the effect of occupation controlled for age. 

Similarly, the value of cr used to calculate standard deviations of parameter 
estimates in Table 34.2 is obtained from model 2, 

(J = \/10128.636/330 = 5.5401 

and this is the value which would be used if we wished to compare models 1 

and 2. In practice the difference between the possible estimates of a are 
usually inconsequential except in very small studies. 

F RATIO TESTS 

The tests discussed above refer changes in deviance to the appropriate chi- 

squared distribution. If the value of a were a known constant, these would 

be exact tests. However, when cr is estimated they are only approximate. 

Exact tests which take account of the fact that a is estimated may be car¬ 

ried out using F distributions, tables of which are readily available. Instead 

of referring the change in deviance to the chi-square distribution, we divide 
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it by the corresponding degrees of freedom to obtain the F ratio. For exam¬ 

ple, the change in deviance for the test for interaction was 2.870, with two 

degrees of freedom, so the corresponding F ratio is 1.435. To obtain the 

exact p-value, the F ratio is referred to the correct F distribution. However, 

to select the correct F distribution, we must specify two different numbers 

of degrees of freedom. The first, called the numerator degrees of freedom, 

is the same as the degrees of freedom for the approximate chi-squared test 

while the second, called the denominator degrees of freedom, is the number 

of degrees of freedom used to estimate a. In our example these are 2 and 

334 respectively. 
In practice there is only a noticeable difference between F ratio tests 

and the approximate chi-squared test in small studies. In our example, 

the p-value obtained from the chi-squared distribution is 0.2381 while that 

obtained from the F distribution is 0.2396. Since the F ratio test is onlj/ 

exact if the assumptions of Gaussian distribution shape and constancy of a 

are true, they are not usually worth the (admittedly slight) extra trouble. 

34.4 Multiplicative models 

A basic assumption in the Gaussian regression model is that changes in 

the explanatory variables affect the mean level of response but not the 

variability. However, it is commonly the case that as the level of response 

goes up, so does its variability. A simple multiplicative model acting at the 

individual level would explain this, for if the effect of changing the level 

of work is to double the values of the individual responses, then the stan¬ 

dard deviation of these individual values will also get doubled. On a log 

scale, however, the effect of doubling the response will be to add log(2) to 

the log response, leaving the standard deviation of the log responses un¬ 

changed. This suggests that when the effects appear to act multiplicatively 

at an individual level, the log response should be analysed in place of the 

response. . . 
There is some suggestion in Table 34.1 that standard deviation ol fibre 

intake goes up with the mean, so that a multiplicative model may be more 

appropriate. This suggests analysing log fibre intakes rather than fibre 

intakes themselves. Inspection of the data suggests that the distribution of 

log fibre intake is closer to the Gaussian shape than the distribution of fibre 

intake, and this is another point in favour of analysing log fibre intakes. 

When the Gaussian regression model 

Mean = Corner + Age + Work. 

is fitted to the logs of the fibre intakes we obtain the parameter estimates 

shown in Table 34.6. _ ■, 
The effect parameters shown in this table are additive effects upon g 

fibre intake and these should be exponentiated to express them as multi- 
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Table 34.6. Effects of age and work on log fibre intake 

Parameter Estimate SD 
Corner 2.8039 0.0430 

Age(l) -0.0253 0.0445 " 
Age(2) -0.0800 0.0431 

Work(l) -0.0345 0.0451 
Work(2) 0.0962 0.0394 

plicative effects on fibre intake. The error factor method can be used to 
calculate confidence intervals for the multiplicative effects. 

Exercise 34.3. Express the estimates of the Work parameters as multiplicative 
effects, and calculate 90% confidence intervals. 

Apart from this change in the way the parameter estimates are interpreted 

the use of the log response in place of the response does not affect matters. 

Models are compared using residual sums of squares in the same way as 
before. 

If the effect of the explanatory variables is multiplicative at a group 

level, but not at an individual level, so that a is constant, a multiplicative 
model such as 

Mean = Corner x Age x Work, 

can be fitted to the data on the original scale. Computer programs are 

available for fitting such models but the need for them rarely arises because 

the idea of an explanatory variable acting multiplicatively at a group level 
but not at an individual level is rather implausible. 

Solutions to the exercises 

34.1 The 90% confidence interval is from -0.402-1.645x0.824 = -1.757 

to —0.402 + 1.645 x 0.824 = 0.953. The lower limit is a reduction of 1.757 
gm, the upper limit is an increase of 0.953 gm. 

34.2 The appropriate value for cr is 5.5349, taken from the model which 

includes both age and work. The deviance for this model is then 328.000, 
and the deviance for the model which includes age alone is 

10384.702/5.53492 = 338.982. 

The change in deviances is 338.982 - 328.000 = 10.982 on 2 degrees of 

freedom, for which p = 0.004 (from the chi-squared distribution on two 
degrees of freedom. 
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34.3 The Work(l) parameter is estimated as —0.0345, and since 

exp(—0.0345) = 0.966, 

the fibre intakes of conductors are 0.966 times those of drivers. The 90% 

confidence interval for this ratio is found from the error factor 

exp(1.645 x 0.0451) = 1.077, 

to be from 0.966/1.077 = 0.897 to 0.966 x 1.077 = 1.04. Similarly, the 

multiplicative effect of Work(2) is 1.101 with 90% confidence interval from 

1.032 to 1.175. 



35 
Postscript 

No scientific methodology stands still and statistical modelling is no ex¬ 

ception. In this book we have deliberately restricted our attention to well- 

established methods which have become a routine part of modern epidemi¬ 

ology, and omitted newer developments, even though some of these will 

undoubtedly make important contributions to epidemiology in the future. 

Two areas in particular are worth mentioning. The first is the extension 

of the models discussed in this book to deal with errors of measurement of 

explanatory variables (see Chapter 27). The second concerns the extension 

of these models to longitudinal studies in which the response is measured 
on several different occasions for each subject. 

The methods we have described concentrate on the analysis of response 
at the level of the individual subject. Even when these analyses have been 

carried out using frequency records this has been purely for computational 

convenience and parameters still refer to the effects upon the response for 

an individual subject. However, some epidemiological research is based 

upon the behaviour of aggregated groups of individuals, for example the 

inhabitants of a country, region, or town. Statistical analysis then con¬ 

centrates on description and ‘explanation’ of differences in the aggregate 

responses of such groups in time and space. By analogy with the disci¬ 

pline of economics, such activity could be termed macro-epidemiology. We 

have not dealt with it in this book, firstly because this field is currently 

undergoing active development, and secondly because new likelihoods and 

fitting procedures become necessary as a result of the more complicated 

probability models which are a necessary response to lack of data at the 
subject level. 

Some further reading 

A good elementary introduction to statistical modelling using the computer 
program GLIM is: 

Healy, M. (1988) GLIM. An Introduction. Oxford Science Publications, 
Oxford University Press, Oxford. 

The reader who requires more mathematical details can find them in a 



POSTSCRIPT 347 

number of statistical texts. General treatments of regression model, in¬ 

cluding Poisson and logistic regression, are given by the following authors. 

Aitkin, M., Anderson, D., Francis, B., and Hinde, J. (1989) Statistical 

modelling in GLIM. Oxford Science Publications, Oxford University Press, 

Oxford. 

McCullagh, M. and Nelder, J.A. (1989) Generalized linear models (2nd 

edn). Chapman and Hall, London. 

Descriptions of modern statistical approaches to the analysis of life tables 

and survival data are given by the following authors. 

Cox, D.R. and Oakes, D. (1984) The analysis of survival data. Chapman 

and Hall, London. 

Kalbfleisch, J.D. and Prentice, R.L. (1980) The statistical analysis of fail¬ 

ure time data. Wiley, New York. 

A detailed exposition of a more general mathematical approach to mod¬ 

elling event occurrence in time is to be found in: 

Andersen, P.K., Borgan, 0., Gill, R.D., and Keiding, N. (1993) Statistical 

models based on counting processes. Springer, Berlin. 

Intermediate in technical level between these purely statistical texts and 

this book are: 

Breslow, N.E. and Day, N. (1980) Statistical methods in cancer epidemiol¬ 

ogy. Vol. I - The analysis of case-control studies. I ARC Scientific Publi¬ 

cations No. 32. International Agency for Research on Cancer, Lyon. 

Breslow, N.E. and Day, N. (1987) Statistical methods m cancer epidemiol¬ 

ogy. Vol. II - The design and analysis of cohort studies. IARC Scientific 

Publications No. 82. International Agency for Research on Cancer, Lyon. 

A collection of papers dealing with very recent research in epidemiological 

modelling is: 

Moolgavkar, S.H. and Prentice, R.L. (ed.) (1986) Modern statistical meth¬ 

ods in chronic disease epidemiology. Wiley, New York. 

An extensive review of the more recent statistical literature is. 

Gail, M.H. (1991) A bibliography and comments on the use of statistical 

models in epidemiology in the 1980s. Statistics in Medicine, 10, 1819 95. 
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Appendix A 
Exponentials and logarithms 

Raising 10 to different powers is a familiar operation. For example, 

101 = 10, 102 = 100, 103 = 1000, • • • 

Mathematically this is regarded as a rule for getting from the power (1,2, 

3, etc.) to the value of 10 raised to that power (10, 100, 1000, etc.). The 
power is often referred to as the exponent and 10 raised to a power is called 

an exponential with base 10. 
Raising 10 to a power can be extended to cover fractional powers using 

the convention that 10^ stands for the square root of 10, 10a stands for the 

cube root of 10, and so on. The rule can also be extended to cover negative 

powers using the convention that 10 1 stands for 1/10 = 0.1. Table A.l 

shows the rule for obtaining 10* from x for a variety of values of x. 

Now suppose that we wish to go the other way and, starting with a 

value of 10*, find the value of x. For example, starting with 1000 gives 

x = 3, while starting with 0.1 gives x = -1. Starting with any positive 

number y, the value of x which makes 10* = y is called the logarithm of y 

with the base 10 and is written \og10(y). Taking logarithms with base 10 

is the inverse operation to exponentiation with base 10. Thus 103 = 1000 

and log1G(1000) = 3. 

Table A.l. Rules for finding 10* from x 

X y = 10* 

0 1 

1 10 

2 100 

3 1000 

-1 0.1 

-2 0.01 

-3 0.001 
1 
2 VTo 
1 
3 

s/To 
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Table A.2. Multiplication using logarithms 

Number Logarithm 

7.2 - -+ 0.8573 
16.9 - -> 1.2279 

121.7 2.0852 

Logarithms were introduced as a computational device in the seven¬ 
teenth century to avoid multiplication and division. Tables were prepared 

so that the logarithm of any number could be looked up. Similarly, tables 

of exponentials were prepared so that logarithms could be converted back 

to the original numbers. These tables of exponentials were called antiloga¬ 

rithms. The use of logarithms to multiply 7.2 by 16.9 is shown in Table A.2. 

Arrows from left to right refer to looking up logarithms while arrows from 

right to left refer to looking up antilogarithms (exponentiation). The result 

line follows from addition on the logarithmic (right-hand) side or multipli¬ 

cation on the exponential (left-hand) side. The widespread availability of 

cheap electronic calculators means that nobody now uses logarithms for 

multiplication or division. However, their mathematical property of con¬ 
verting multiplication to addition, embodied in 

l°g(7.2 x 16.9) = log(7.2) + log(16.9) 

is still very useful. Another useful property which follows from this is that 

log(7.22) = 2 x log(7.2) 

log(7.23) = 3 x log(7.2) 

and so on. 

Raising 2 to a power is called exponentiation with base 2. The inverse 

process produces logarithms to the base 2 and these are written log2(y). 

Both exponentials and logarithms can be defined with respect to any base. 

Fig. A.l shows plots of the exponential functions 10x, 3x,ex, and 2X, where 

the symbol e represents the number 2.71828183. The number e is chosen 

so that the tangent to the plot of ex versus x drawn at x = 0 has a slope of 

exactly 1 (shown by the broken line). It follows that when x is very small, 

ex fa 1 + x. 

and, therefore, 

loge(l + x) ks x. 

Logarithms to the base e are referred to as natural logarithms, and it is 

the above property that makes them ‘natural’. The natural logarithm 
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Fig. A.l. Plots of the function y = cx 

function is sometimes written as ln(y), but in this book we shall always use 

logarithms to the base e, and write them simply as log(y). We also write 

the exponential function with base e as exp(:r). Note, however, that many 

electronic calculators assign an entirely different meaning to a key marked 

exp. 
The logarithms of the same number, using different bases, are related 

by a simple constant multiplier. For example 

loge(y) = log10(y) x 2.3026 

where 2.3026 = loge(10). Similarly 

log2(y) = logio(y) x 3.3219 

where 3.3219 = log2(10). 



Appendix B 

Some basic calculus 

The gradient of the graph of y versus x measures the rate at which y is 

increasing (or decreasing) at any point on the graph. It is most easily 

defined for a straight line graph, such as the one in Fig. B.l. In this case 

the rate of increase or decrease is the same at any point on the graph, and is 

measured by the ratio of the rise to the run. For a straight line relationship 

in which y decreases with x the gradient is negative. Gradients have units 

equal to those of y/x. The central idea of calculus is that over a small run 

any curve is approximately a straight line and the gradient of the curve at 

any point in the run is approximately equal to the gradient of this line. 

Differential calculus consists of a number of simple rules which are used 

to evaluate gradients of curves for which the y co-ordinate of any point on 

the curve is given by some function of the x co-ordinate. The most useful 

of these are shown in Table B.l. A further very important rule is that the 

gradient of a function constructed as the sum of two simpler functions is 

y 

Fig. B.l. Gradient of a straight line graph 
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Table B.l. Gradients of some simple functions of x 

Function Gradient 

c (constant) 0 

X 1 

—x -1 

cx c 

(*)2 2x 

(x)m m(x)m_1 

i = (z)-1 
II 

C
S 1 TT I 

exp(x) exp(x) 

log(x) 
1 
X 

(c + x)2 2 (c + x) 

(c-x)2 —2(c - x) 

log(c -+- x) 
1 

c-\-x 

log(c - x) 
l 

c—x 

the sum of the gradients of the constituent functions so that, for example, 

the gradient of x + log(x) is 1 + 1/x. 
The use of these rules is now illustrated by finding the gradient of the 

log likelihood for a rate A, based on D cases and Y person years. The log 

likelihood for A is 
D log(A) - AT. 

From Table B.l the gradient of log(A) is 1/A and the gradient of A is 1. 

Hence the gradient of the log likelihood is 

D 

A 
-y. 

The maximum value of the log likelihood occurs when the gradient is zero, 

that is, when A = D/Y, so the most likely value of A is D/Y. 

The curvature of the log likelihood curve at the peak is important in 

determining the range of supported values. A highly curved peak corre¬ 

sponds to a narrow range. The curvature at a point on a curve is a measure 

of how fast the gradient is changing from one value of x to the next; it t e 

gradient is changing quickly then the curvature is high, while if the gradient 

is changing slowly the curvature is low. For log likelihood curves the gra¬ 

dient changes from a positive quantity (on the left) to a negative quantity 

(on the right) so the gradient decreases as x increases and the curvature is 

^^TheTcurvature of a curve, at a point, is defined to be the rate of change 

of the gradient of the curve at that point. The way that Table B.l can 

be used to find curvature is now illustrated using the log likelihood for A 
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again. The gradient of the log likelihood at any value of A has been shown 
to be 

Prom Table B.l the gradient of a constant is zero and tfie gradient of 1/A 

is —1/(A)2, so the curvature of the log likelihood at any value of A is 

D 

w 



Appendix C 

Approximate profile likelihoods 

This appendix describes the mathematics underlying Gaussian approxima¬ 

tion of profile log likelihoods. 

C.l The difference between two parameters 

We shall start with an important special case. Consider a model with 

two parameters, (3\ and /3o, and suppose that our main interest is in the 

difference 

7 = Pi ~ A)- 

We shall further assume that the log likelihoods for and (30 are based 

on two independent sets of data so that the total log likelihood is the sum 

of the two separate log likelihoods. 
Fig. C.l illustrates the construction of the profile likelihood for 7. The 

upper panel of the figure shows the total log likelihood obtained by adding 

the log likelihoods for pl and p0. Contours are shown for log likelihood 

ratios of -5, -4,..., -1. The four diagonal lines correspond to different 

values of 7. For example, the top leftmost line represents values of A, A) 

satisfying 

Pi - A> = 0 

so that this line corresponds to 7 = 0. Similarly, the remaining lines 

correspond to values of 7 of 0.5, 1.0, and 1.5 respectively. To find the 

profile likelihood for 7, we find the maximum value of the log likelihood 

along each of these lines. This maximum is plotted against 7 in the lower 

panel of the figure. 
The Gaussian approximation of the profile log likelihood can be ob¬ 

tained from making use of the relationship between gradients and curva¬ 

tures of the total log likelihood (upper panel), and the gradient and curva¬ 

ture of the profile log likelihood (lower panel). These relationships can be 

derived using the laws of calculus but are only quoted here. 
If, at the maximum of the log likelihood along the line /?i - A) = 7> the 

gradient is G\ with respect to Pi and Go with respect to Po the gradient 
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V 

-4.8 -4.6 -4.4 -4.2 -4.0 -3.8 -3.6 

Pi 

Y 

Fig. C.l. The profile log likelihood 
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of the profile log likelihood at 7 is G, where 

G = Gi = -Go¬ 

lf Ci, C0 are the corresponding curvatures with respect to Pi and p0, then 
the curvature of the profile log likelihood at 7 is C, where 

1 _ J_ tL 

C ~ C[ + Co ‘ 

From these results it follows directly that, if the most likely values of 

Px and Po are Mx and M0 respectively, and the corresponding standard 

deviations of the estimates are Si and So, then the most likely value of 7 

is 
M = Mi - M0, 

and the standard deviation of the estimate is 

s= x/OST + tSo)2. 

THE RATE RATIO REVISITED 

As an example, we shall apply use these general rules to the problem of 

estimating and testing the logarithm of the rate ratio. Let Ao and Ax be 

the two rate parameters and define 

Pi = log(Ai), 

then 

7 = 

Po = log(Ao) 

Pi - Po 

log(0), 

the log of the rate ratio. 
If, in the exposed group, Dx cases are observed in Yi person-years, and 

in the unexposed group D0 cases are observed in Y0 person-years, the total 

log likelihood is 

Di log(Ai) - A1Y1 + D0 log(Ao) - A0Yo 

The gradients of this with respect to pi and Po are 

Gi= Di — A1Y1 C0 = D0 - A0Yo, 
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and the curvatures are 

Ci = -AiYi Co = -AoYo- 

The most likely values for /3i and /30 are 

Mi = log(ZVYi), M0 = log(T>0/Yo) 

and the corresponding standard deviations are 

Si — y/l/Di, So — y/l/Do. 

Using the rules given at the end of the last section, the Gaussian approxi¬ 

mation for the profile log likelihood for 7 = log(0) has 

M = log(Di/Yi)-\og(D0/Yo) 

and 

These expressions are identical to those obtained in Chapter 13. 

The Wald test is also based on the Gaussian approximation shown 

above. The score test is obtained from the gradient and curvature of the 

profile log likelihood at the null value of the parameter, 7 = 0. Here Ai 

and A0 are equal and their most likely common value is D/Y so that the 

gradients and curvatures are 

Gi = D1 - Ei 
Ci = -Ei 

Go — Dq — Eo 
Co = -C0 

where Ei — {D/Y)Y\ and E0 = (D/Y)Y0 represent ‘expected’ numbers of 

failures in the two groups under the null hypothesis. The score, U, is given 

by either G1 or -C0 (it can easily be verified that these are identical). The 

score variance is minus the curvature of the profile log likelihood and, using 

the relationship 

_1_ _ J_ 

C~C^ + C^ c0' 

1 

this is 

V 
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E\Ep 

E 

Since D = E, this can also be written 

Ei 

E 

and this agrees with the expression given in Chapter 13. 

THE DIFFERENCE BETWEEN TWO MEANS 

A second example is the difference between two mean parameters in a 

Gaussian model for responses measured on a continuous metric scale. For 

example, we might wish to compare blood pressure in two groups of sub¬ 

jects. We shall let n x and represent the mean parameters for the two 

groups and assume that the standard deviation of responses about the 

mean is the same in both groups, a let us say. As in Chapter 8 we shall 

assume o to be a known constant although, in practice, it would also have 

to be estimated from the data. 

Exercise C.l. Derive expressions for the most likely value and for the standard 

deviation of the estimate of the parameter 

V - oElEl 
E E 

- °Ei 1 - 

7 = Mi _ Mo- 

C.2 Weighted sums 

Similar results hold for more general problems. For example, the parameter 

of interest may be defined as 

7 = WiPi + W0Po 

where Wx and W0 are known constants. In this case the same argument 

illustrated in Fig. C.l may be applied, but the parallel lines corresponding 

to fixed values of 7 now have different slopes. The relationship between 

gradients in the total log likelihood and the gradient of the profile likelihood 

is now 

r = — = — 

Wi W0 

and for the curvatures we have 

1 _ (m)2 

C Cl Co 
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These results generalize in an obvious way to a function of more than 

two parameters, of the form 

7 — + W2P2 + JT3/33 + • • • , 

the gradient of the profile log likelihood now being 

G — —L — _ ^3 

, Wi W2 W3 

and its curvature 

i _ hL)! (wy2 (W3y 
c C, C2 C;t ' 

If the most likely values of (3are Mi, M2,... with standard 

deviations S\,S2, ■.., then the most likely value of 7 is 

-M — W\Mi -|- W2M2 T T ■ • ■ 

with standard deviation 

5 = V(WhSi)2 + (W2S2)2 + (W353)2 + • • • . 

Solutions to the exercises 

C.l The log likelihoods for /ri and f.lq are Gaussian with most likely 

values Mi and M0 — the arithmetic means of the Ni observations in the 

first group and the Nq observations in the second. The corresponding 

standard deviations are 

c _ a c — G 

1 VNl’ °~VN-0- 

It follows from the results of this section that the profile log likelihood for 

AT — Ato has most likely value Mi — Mq and standard deviation 

(a)2 , (» 
iVi 

+ 
Nn 

= a 
J_ 1 

Ni No 



Appendix D 
Table of the chi-squared distribution 

Probability 

P 1 

Degrees of freedom, v 

2 3 4 5 

0.50 0.455 1.386 2.366 3.357 4.351 

0.25 1.323 2.773 4.108 5.385 6.626 

0.10 2.706 4.605 6.251 7.779 9.2367 

0.075 3.170 5.181 6.905 8.496 10.008 

0.050 3.841 5.991 7.815 9.488 11.070 

0.025 5.024 7.378 9.348 11.143 12.833 

0.0100 6.635 9.210 11.345 13.277 15.086 

0.0075 7.149 9.786 11.966 13.937 15.780 

0.0050 7.879 10.597 12.838 14.860 16.750 

0.0025 9.141 11.983 14.320 16.424 18.386 

0.0010 10.828 13.816 16.266 18.467 20.515 

Probability Degrees of freedom, v 

P 6 7 8 9 10 

0.50 

0.25 

0.10 
0.075 

0.050 

0.025 

0.0100 
0.0075 

0.0050 

0.0025 

0.0010 

5.348 

7.841 

10.645 

11.466 

12.592 

14.449 

16.812 

17.537 

18.548 

20.249 

22.458 

6.346 

9.037 

12.017 

12.883 

14.067 

16.013 

18.475 

19.229 

20.278 

22.040 

24.322 

7. 

10.219 

13.362 

14.270 

15.507 

17.535 

20.090 

20.870 

21.955 

23.774 

26.124 

11.389 

14.684 

15.631 

16.919 

19.023 

21.666 

22.471 

23.589 

25.462 

27.877 

12.549 

15.987 

16.971 

18.307 

20.483 

23.209 

24.038 

25.188 

27.112 

29.588 

The above tables give the value that a variable, distributed according to the chi-squared 

distribution with «/ degrees of freedom, will exceed with probability p. For example, a 

variable distributed according to the chi-squared distribution with one degree of freedom 

has a probability of p = 0.1 of exceeding the value 2.706. 
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conditional, 10, 28 
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profile log likelihood, 125 

approximate, 130, 357 
proportional hazards model, 142, 147 

quadratic curve, 74 

quadratic dose-response, 253 

Quetelet’s index, 271 

rare disease assumption, 8, 161 

rate difference parameter, 129, 130, 224 
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relationship to risk, 46 

rate ratio parameter, 124, 161 

common across strata, 142 
recall bias, 163 

reference category, 160 

reference rates, 58, 106, 147 

regression model, 217 
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residual standard deviation, 337 

residual sum of squares, 338 

residual variance, 337 

risk, 235 

risk parameter, 7 
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risk score, 271 

risk set, 300 
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saturated model, 242, 339 

score, 103 
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score variance, 103 
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predictive value, 13 
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sojourn time, 323 

specificity, 13 

second derivative, 84 

selection bias, 162, 183, 309 

due to censoring, 68 

due to late entry, 68 

significance test, 96, 99 

standard deviation parameter, 73 
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direct, 136 

indirect, 148 

standardized mortality ratio, 60, 148 

comparison of, 149 

standardized rate, 136 

comparison of, 139, 149 

stepwise regression, 271 

stochastic model, 4 

stratification, 135 

in case-control studies, 175, 203 

in cohort studies, 141, 200 

study base, 153 

support, 18, 117 

supported range, 20 
approximate, 79 

for odds parameter 

approximate, 83 

for rate parameter, 44 

approximate, 80, 82 

for risk parameter, 21 

approximate, 79, 83 

survival curve, 32 

synergism, 282 

time band, 227 

time scale, 53, 309 

transformation of parameter, 80, 86 

trend test, 249 

trend, testing for, 197, 252 

vague prior, 117 

variable, 224 
binary, 225 

categorical, 224 

derived, 225 

explanatory, 219, 272 

levels, 224 

quantitative, 224 

time-varying, 307 
variable selection strategy, 271 

variance parameter, 73 

Wald test, 100, 101, 237 
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The most important concept in statistics is the probability model. All 

statistical analysis of data is based on probability models, even though 

these may not be explicit. Only by fully understanding the model can one 

fully understand the analysis. In showing how to use models in epidemi¬ 

ology' the authors have chosen to emphasize the role of likelihood. This is 

an approach to statistics which is both simple and intuitively satisfying, 

and has the additional advantage that it requires the model and its para¬ 

meters to be made explicit, even in the simplest situations. More complex 

problems can then be tackled by natural extensions of simple methods 

and do not require a whole new way of looking at things. 
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